Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2015, Vol. 16 Issue (12): 976-986    DOI: 10.1631/jzus.A1500080
Transportation Engineering     
Effect of softening of cement asphalt mortar on vehicle operation safety and track dynamics
Jian Han, Guo-tang Zhao, Xin-biao Xiao, Ze-feng Wen, Qing-hua Guan, Xue-song Jin
1State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China; 2China Railway Corporation, Beijing 100844, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Cement asphalt mortar (CAM) softening is a common phenomenon that results from ageing and rain soaking when a high-speed railway is in service. CAM softening seriously affects vehicle operation safety and track dynamics. In this paper, a 3D coupling dynamic model of a vehicle and a China railway track system I (CRTS-I) slab track is developed. By using the proposed model, the wheel-rail contact forces, derailment coefficient, wheelset loading reduction ratio, and the track displacements are calculated to study the influences of CAM softening on the dynamic characteristics of a vehicle-track system. A track-subgrade finite difference model is developed to study the effect of CAM softening on track damage. The results show that track interface shear failure develops when the CAM softening coefficients reach 10–100. The CAM softening coefficient should not be less than 1000, otherwise a high-speed running vehicle may risk derailment.

Key wordsHigh-speed railway      Cement asphalt mortar (CAM) softening      Vehicle-track coupling dynamics      Operation safety      Track damage     
Received: 04 April 2015      Published: 04 December 2015
CLC:  U270  
Cite this article:

Jian Han, Guo-tang Zhao, Xin-biao Xiao, Ze-feng Wen, Qing-hua Guan, Xue-song Jin. Effect of softening of cement asphalt mortar on vehicle operation safety and track dynamics. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(12): 976-986.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1500080     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2015/V16/I12/976

[1] Satoru Sone. Comparison of the technologies of the Japanese Shinkansen and Chinese High-speed Railways[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 769-780.
[2] Xin-biao Xiao, Liang Ling, Jia-yang Xiong, Li Zhou, Xue-song Jin. Study on the safety of operating high-speed railway vehicles subjected to crosswinds[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 694-710.
[3] Shuo-qiao Zhong, Jia-yang Xiong, Xin-biao Xiao, Ze-feng Wen, Xue-song Jin. Effect of the first two wheelset bending modes on wheel-rail contact behavior[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 984-1001.
[4] Ren-peng Chen, Jin-miao Chen, Han-lin Wang. Recent research on the track-subgrade of high-speed railways[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1034-1038.
[5] Liang Ling, Xin-biao Xiao, Jia-yang Xiong, Li Zhou, Ze-feng Wen, Xue-song Jin. A 3D model for coupling dynamics analysis of high-speed train/track system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 964-983.
[6] Xue-song Jin. Key problems faced in high-speed train operation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 936-945.
[7] Li Wang, Li-min Jia, Yong Qin, Jie Xu, Wen-ting Mo. A two-layer optimization model for high-speed railway line planning[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 902-912.
[8] Xue-cheng Bian, Chang Chao, Wan-feng Jin, Yun-min Chen. A 2.5D finite element approach for predicting ground vibrations generated by vertical track irregularities[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 885-894.
[9] Yuan-feng Duan, Ru Zhang, Yang Zhao, Siu-wing Or, Ke-qing Fan, Zhi-feng Tang. Smart elasto-magneto-electric (EME) sensors for stress monitoring of steel structures in railway infrastructures[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 895-901.