Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2008, Vol. 9 Issue (1): 26-31    DOI: 10.1631/jzus.A071308
Civil and Mechanical Engineering     
Dynamic response analysis of a moored crane-ship with a flexible boom
Hui-li REN, Xue-lin WANG, Yu-jin HU, Cheng-gang LI
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The dynamic response of moored crane-ship is studied. Governing equations for the dynamic response of a crane-ship coupled with the pendulum motion of the payload are derived based on Lagrange’s equations. The boom is modeled based on finite element method, while the payload is modeled as a planar pendulum of point mass. The dynamic response was studied using numerical method. The calculation results show that the large-amplitude responses occur at wave periods near the natural period of the payload. Load swing angle is smaller for crane-ship with flexible boom, in comparison with rigid boom. The ship surge motions have large vibrations for crane-ship with flexible boom, which were not observed for a rigid boom. The analysis identifies the significance of key parameters and reveals how the system design can be adjusted to avoid critical conditions.

Key wordsDynamic response      Moored crane-ship      Finite element method      Rigid-flexible coupling dynamic model     
Received: 12 June 2007      Published: 14 December 2007
CLC:  U615.35  
Cite this article:

Hui-li REN, Xue-lin WANG, Yu-jin HU, Cheng-gang LI. Dynamic response analysis of a moored crane-ship with a flexible boom. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(1): 26-31.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A071308     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2008/V9/I1/26

[1] Qi-yin Zhu, Ze-xiang Wu, Yan-ling Li, Chang-jie Xu, Jian-hua Wang, Xiao-he Xia. A modified creep index and its application to viscoplastic modelling of soft clays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 272-281.
[2] Xiang-kai Meng, Shao-xian Bai, Xu-dong Peng. An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 172-184.
[3] Jie Zhang, Guang-xu Han, Xin-biao Xiao, Rui-qian Wang, Yue Zhao, Xue-song Jin. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1002-1018.
[4] Ren-peng Chen, Jin-miao Chen, Han-lin Wang. Recent research on the track-subgrade of high-speed railways[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1034-1038.
[5] Xin Zhao, Ze-feng Wen, Heng-yu Wang, Xue-song Jin, Min-hao Zhu. Modeling of high-speed wheel-rail rolling contact on a corrugated rail and corrugation development[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 946-963.
[6] Wen-jie Zhou, Xue-song Wei, Xian-zhu Wei, Le-qin Wang. Numerical analysis of a nonlinear double disc rotor-seal system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 39-52.
[7] Zhong-xiu Fei, Shui-guang Tong, Chao Wei. Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 268-280.
[8] Y. Faradjian Mohtaram, J. Taheri Kahnamouei, M. Shariati, B. Behjat. Experimental and numerical investigation of buckling in rectangular steel plates with groove-shaped cutouts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 469-480.
[9] Zhen-fei Zhan, Jie Hu, Yan Fu, Ren-Jye Yang, Ying-hong Peng, Jin Qi. Multivariate error assessment of response time histories method for dynamic systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(2): 121-131.
[10] Zhen Liu, Xiong (Bill) Yu, Jun-liang Tao, Ye Sun. Multiphysics extension to physically based analyses of pipes with emphasis on frost actions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 877-887.
[11] Heng Yuan, Kyu-jin Kim, Won-seok Kang, Byoung-ho Kang, Se-hyuk Yeom, Jae-ho Kim, Shin-won Kang. High-efficiency technique based on dielectrophoresis for assembling metal, semiconductor, and polymer nanorods[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(5): 368-373.
[12] Cheng Huang, Yan Bao, Dai Zhou, Jin-quan Xu. Large eddy simulation for wind field analysis based on stabilized finite element method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(4): 278-290.
[13] Su-qing Huang, Ju Chen, Wei-liang Jin. Numerical investigation and design of thin-walled complex section steel columns[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(2): 131-138.
[14] Xue-cheng Bian, Chang Chao, Wan-feng Jin, Yun-min Chen. A 2.5D finite element approach for predicting ground vibrations generated by vertical track irregularities[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 885-894.
[15] Ji-en Ma, Bin Zhang, Xiao-yan Huang, You-tong Fang, Wen-ping Cao. Design and analysis of the hybrid excitation rail eddy brake system of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 936-944.