Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2007, Vol. 8 Issue (11): 1746-1753    DOI: 10.1631/jzus.2007.A1746
Geotechnical & Civil Engineering     
Studies on parallel seismic testing for integrity of cemented soil columns
HUANG Da-zhi, CHEN Long-zhu
Institute of Engineering Safety and Disaster Prevention, Dept. of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are introduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil system is established for impulse responses. Under saturated soil or unsaturated soil condition, several vibrating velocity-time histories at different depths in parallel hole are obtained based on the numerical simulation. It shows that the length of the pile and the one-dimensional (1D) P-wave velocity in the pile can be determined easily from the features of the mentioned velocity-time histories. By examining the slopes of the first arrival time plotted versus depth or the depth where the amplitude of the first arrival significantly decreases, the length of the pile can be determined. The effects of the 3D P-wave propagation through the saturated soil and the defect of the cemented soil column on the velocity-time histories are also investigated.

Key wordsLong branched gas pipeline network      Unsteady      Non-isothermal gas flow      CFD-simulator      Numerical simulation      Finite Volume Method      Interior Point Method     
Received: 10 February 2007     
CLC:  TU473.1  
  TU311.3  
Cite this article:

HUANG Da-zhi, CHEN Long-zhu. Studies on parallel seismic testing for integrity of cemented soil columns. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(11): 1746-1753.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2007.A1746     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2007/V8/I11/1746

[1] Yi-feng Wu, Hao Wang, Ai-qun Li, Dong-ming Feng, Ben Sha, Yu-ping Zhang. Explicit finite element analysis and experimental verification of a sliding lead rubber bearing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 363-376.
[2] Xiao-wen Song, Peng-zhe Lin, Rui Liu, Pei Zhou. Skin friction reduction characteristics of variable ovoid non-smooth surfaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 59-66.
[3] Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan. A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 632-645.
[4] Zhen-yu Wang, Yang Zhao, Guo-wei Ma, Zhi-guo He. A numerical study on the high-velocity impact behavior of pressure pipes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 443-453.
[5] Han-jiang Lai, Jun-jie Zheng, Rong-jun Zhang, Ming-juan Cui. Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 803-817.
[6] Qi-hua Ran, Qun Qian, Wei Li, Xu-dong Fu, Xiao Yu, Yue-ping Xu. Impact of earthquake-induced-landslides on hydrologic response of a steep mountainous catchment: a case study of the Wenchuan earthquake zone[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 131-142.
[7] Peng-fei Li, Qian Fang, Ding-li Zhang. Analytical solutions of stresses and displacements for deep circular tunnels with liners in saturated ground[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 395-404.
[8] Zhi-jiang Jin, Lin Wei, Li-long Chen, Jin-yuan Qian, Ming Zhang. Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(2): 137-146.
[9] Hai-jun Xuan, Lu-lu Liu, Yi-ming Feng, Qing He, Juan-juan Li. Containment of high-speed rotating disk fragments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(9): 665-673.
[10] Nu-wen Xu, Chun-an Tang, Hong Li, Feng Dai, Ke Ma, Jing-dong Shao, Ji-chang Wu. Excavation-induced microseismicity: microseismic monitoring and numerical simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 445-460.
[11] Xiao-bin Zhang, Wei Zhang, Xue-jun Zhang. Modeling droplet vaporization and combustion with the volume of fluid method at a small Reynolds number[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 361-374.
[12] Zhao-dong Xu, Deng-xiang Wang, Ke-yi Wu. Simulation of stochastic wind field for large complex structures based on modified Fourier spectrum[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(3): 238-246.
[13] Meng Ma, Valéri Markine, Wei-ning Liu, Yang Yuan, Feng Zhang. Metro train-induced vibrations on historic buildings in Chengdu, China[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 782-793.
[14] Min Zhang, Xing-hua Wang, Guang-cheng Yang, You Wang. Numerical investigation of the convex effect on the behavior of crossing excavations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 747-757.
[15] Cheng Huang, Dai Zhou, Yan Bao. A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 33-45.