Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2013, Vol. 14 Issue (2): 137-146    DOI: 10.1631/jzus.A1200146
Mechanical Engineering     
Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve
Zhi-jiang Jin, Lin Wei, Li-long Chen, Jin-yuan Qian, Ming Zhang
Institute of Chemical Machinery and Process Equipment, Zhejiang University, Hangzhou 310027, China; Hangzhou Worldwides Valve Co., Ltd., Hangzhou 311122, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, a new pressure reducing valve (PRV) with an orifice plate is proposed. The main objective is to explain the mechanisms of pressure reduction and energy conversion in the new PRV. A numerical simulation method was used to investigate the PRV internal flow field and to analyze the throttling effects of the orifice plate and the transform of thermal parameters as outlet pressure, outlet temperature, velocity, and superheat. A structure improvement method for the valve body and orifice plate is put forward to reduce energy loss. The governing equations for internal flow numerical simulation are composed of the continuity, momentum, energy and k-ε transport equations, based on isotropic eddy viscosity theory. Different valve plug displacement models were built to describe the double throttling process. Our analysis shows that the steam pressure drops twice and the degree of superheat increases. There are also lots of eddies which clog the flow channel and disturb the steam flow in the valve cavity after the valve plug and the outlet cavity. After modifying the structure, the numerical results show a better performance of steam flow.

Key wordsNumerical simulation      Pressure and temperature reducing system      Pressure reducing valve (PRV)      Double throttling      Structural improvement     
Received: 14 June 2012      Published: 31 January 2013
CLC:  TK284.2  
Cite this article:

Zhi-jiang Jin, Lin Wei, Li-long Chen, Jin-yuan Qian, Ming Zhang. Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(2): 137-146.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1200146     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2013/V14/I2/137

[1] Yi-feng Wu, Hao Wang, Ai-qun Li, Dong-ming Feng, Ben Sha, Yu-ping Zhang. Explicit finite element analysis and experimental verification of a sliding lead rubber bearing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 363-376.
[2] Xiao-wen Song, Peng-zhe Lin, Rui Liu, Pei Zhou. Skin friction reduction characteristics of variable ovoid non-smooth surfaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 59-66.
[3] Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan. A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 632-645.
[4] Zhen-yu Wang, Yang Zhao, Guo-wei Ma, Zhi-guo He. A numerical study on the high-velocity impact behavior of pressure pipes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 443-453.
[5] Han-jiang Lai, Jun-jie Zheng, Rong-jun Zhang, Ming-juan Cui. Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 803-817.
[6] Qi-hua Ran, Qun Qian, Wei Li, Xu-dong Fu, Xiao Yu, Yue-ping Xu. Impact of earthquake-induced-landslides on hydrologic response of a steep mountainous catchment: a case study of the Wenchuan earthquake zone[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 131-142.
[7] Peng-fei Li, Qian Fang, Ding-li Zhang. Analytical solutions of stresses and displacements for deep circular tunnels with liners in saturated ground[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 395-404.
[8] Hai-jun Xuan, Lu-lu Liu, Yi-ming Feng, Qing He, Juan-juan Li. Containment of high-speed rotating disk fragments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(9): 665-673.
[9] Nu-wen Xu, Chun-an Tang, Hong Li, Feng Dai, Ke Ma, Jing-dong Shao, Ji-chang Wu. Excavation-induced microseismicity: microseismic monitoring and numerical simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 445-460.
[10] Xiao-bin Zhang, Wei Zhang, Xue-jun Zhang. Modeling droplet vaporization and combustion with the volume of fluid method at a small Reynolds number[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 361-374.
[11] Zhao-dong Xu, Deng-xiang Wang, Ke-yi Wu. Simulation of stochastic wind field for large complex structures based on modified Fourier spectrum[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(3): 238-246.
[12] Min Zhang, Xing-hua Wang, Guang-cheng Yang, You Wang. Numerical investigation of the convex effect on the behavior of crossing excavations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 747-757.
[13] Meng Ma, Valéri Markine, Wei-ning Liu, Yang Yuan, Feng Zhang. Metro train-induced vibrations on historic buildings in Chengdu, China[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 782-793.
[14] Chao-rong Zheng, Yao-chun Zhang. Numerical investigation on the drag reduction properties of a suction controlled high-rise building[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(7): 477-487.
[15] Jin WANG, Xu-wen ZHANG, Zhi-ping CHEN, Jian-hua LAN. Development on test equipment of coal slurry mixing tank[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(3): 175-180.