Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2012, Vol. 13 Issue (6): 445-460    DOI: 10.1631/jzus.A1100131
Civil Engineering     
Excavation-induced microseismicity: microseismic monitoring and numerical simulation
Nu-wen Xu, Chun-an Tang, Hong Li, Feng Dai, Ke Ma, Jing-dong Shao, Ji-chang Wu
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China; Institute of Rock Instability and Seismicity Research, Dalian University of Technology, Dalian 116024, China; HydroChina Chengdu Engineering Corporation, Chengdu 610072, China; China Guodian Dadu River Dagangshan Hydropower Development Co., Ltd., Ya'an 625409, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The volume of influence of excavation at the right bank slope of Dagangshan Hydropower Station, southwest China, is essentially determined from microseismic monitoring, numerical modeling and conventional measurements as well as in situ observations. Microseismic monitoring is a new application technique for investigating microcrackings in rock slopes. A microseismic monitoring network has been systematically used to monitor rock masses unloading relaxation due to continuous excavation of rock slope and stress redistribution caused by dam impoundment later on, and to identify and delineate the potential slippage regions since May, 2010. An important database of seismic source locations is available. The analysis of microseismic events showed a particular tempo-spatial distribution. Seismic events predominantly occurred around the upstream slope of 1180 m elevation, especially focusing on the hanging wall of fault XL316-1. Such phenomenon was interpreted by numerical modeling using RFPA-SRM code (realistic failure process analysis-strength reduction method). By comparing microseismic activity and results of numerical simulation with in site observation and conventional measurements results, a strong correlation can be obtained between seismic source locations and excavation-induced stress distribution in the working areas. The volume of influence of the rock slope is thus determined. Engineering practices show microseismic monitoring can accurately diagnose magnitude, intensity and associated tempo-spatial characteristics of tectonic activities such as faults and unloading zones. The integrated technique combining seismic monitoring with numerical modeling, as well as in site observation and conventional surveying, leads to a better understanding of the internal effect and relationship between microseismic activity and stress field in the right bank slope from different perspectives.

Key wordsMicroseismic monitoring      Rock slope      Numerical simulation      Stability analysis      Dagangshan Hydropower Station     
Received: 11 May 2011      Published: 04 June 2012
CLC:  P642.22  
  TU45  
Cite this article:

Nu-wen Xu, Chun-an Tang, Hong Li, Feng Dai, Ke Ma, Jing-dong Shao, Ji-chang Wu. Excavation-induced microseismicity: microseismic monitoring and numerical simulation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 445-460.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1100131     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2012/V13/I6/445

[1] Yi-feng Wu, Hao Wang, Ai-qun Li, Dong-ming Feng, Ben Sha, Yu-ping Zhang. Explicit finite element analysis and experimental verification of a sliding lead rubber bearing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 363-376.
[2] Xiao-wen Song, Peng-zhe Lin, Rui Liu, Pei Zhou. Skin friction reduction characteristics of variable ovoid non-smooth surfaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 59-66.
[3] Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan. A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 632-645.
[4] Zhen-yu Wang, Yang Zhao, Guo-wei Ma, Zhi-guo He. A numerical study on the high-velocity impact behavior of pressure pipes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 443-453.
[5] Han-jiang Lai, Jun-jie Zheng, Rong-jun Zhang, Ming-juan Cui. Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 803-817.
[6] Qi-hua Ran, Qun Qian, Wei Li, Xu-dong Fu, Xiao Yu, Yue-ping Xu. Impact of earthquake-induced-landslides on hydrologic response of a steep mountainous catchment: a case study of the Wenchuan earthquake zone[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 131-142.
[7] Peng-fei Li, Qian Fang, Ding-li Zhang. Analytical solutions of stresses and displacements for deep circular tunnels with liners in saturated ground[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 395-404.
[8] Zhi-jiang Jin, Lin Wei, Li-long Chen, Jin-yuan Qian, Ming Zhang. Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(2): 137-146.
[9] Hai-jun Xuan, Lu-lu Liu, Yi-ming Feng, Qing He, Juan-juan Li. Containment of high-speed rotating disk fragments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(9): 665-673.
[10] Liang Zheng, Shi-quan Zhong, Shou-feng Ma. Controlling traffic jams on a two-lane road using delayed-feedback signals[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(8): 620-632.
[11] Xiao-bin Zhang, Wei Zhang, Xue-jun Zhang. Modeling droplet vaporization and combustion with the volume of fluid method at a small Reynolds number[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 361-374.
[12] Zhao-dong Xu, Deng-xiang Wang, Ke-yi Wu. Simulation of stochastic wind field for large complex structures based on modified Fourier spectrum[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(3): 238-246.
[13] Meng Ma, Valéri Markine, Wei-ning Liu, Yang Yuan, Feng Zhang. Metro train-induced vibrations on historic buildings in Chengdu, China[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 782-793.
[14] Min Zhang, Xing-hua Wang, Guang-cheng Yang, You Wang. Numerical investigation of the convex effect on the behavior of crossing excavations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 747-757.
[15] Chao-rong Zheng, Yao-chun Zhang. Numerical investigation on the drag reduction properties of a suction controlled high-rise building[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(7): 477-487.