Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2011, Vol. 12 Issue (3): 238-246    DOI: 10.1631/jzus.A1000209
Mechanical & Civil Engineering     
Simulation of stochastic wind field for large complex structures based on modified Fourier spectrum
Zhao-dong Xu, Deng-xiang Wang, Ke-yi Wu
Key Laboratory of C & PC Structures of the Ministry of Education, Southeast University, Nanjing 210096, China, Civil Engineering College, Southeast University, Nanjing 210096, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Simulation for stochastic wind field is very important in analyzing dynamic responses of large complex structures due to strong wind. The typical simulation method is the spectrum representation method (SRM), but the SRM has drawbacks of inferior precision in lower frequency and slow calculating speed. In view of this, the modified Fourier spectrum method (MFSM) is introduced into the simulation of stochastic wind field in this paper. In this method, phase information of wind velocity time history is determined by cross power spectral density (CPSD) between adjacent points, and the wind velocity time history with time and space correlation is generated by iterative modification for CPSD considering auto power spectral density (APSD). Simulation of the wind field for a long-span bridge is undertaken to verify the effectiveness of the MFSM. Simulation results of the SRM and the MFSM are compared. It can be concluded that the MFSM is more accurate and has higher calculation speed than the SRM.

Key wordsModified Fourier spectrum      Stochastic wind field      Large complex structures      Numerical simulation     
Received: 03 May 2010      Published: 09 March 2011
CLC:  TU393.3  
Cite this article:

Zhao-dong Xu, Deng-xiang Wang, Ke-yi Wu. Simulation of stochastic wind field for large complex structures based on modified Fourier spectrum. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(3): 238-246.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1000209     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2011/V12/I3/238

[1] Yi-feng Wu, Hao Wang, Ai-qun Li, Dong-ming Feng, Ben Sha, Yu-ping Zhang. Explicit finite element analysis and experimental verification of a sliding lead rubber bearing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 363-376.
[2] Xiao-wen Song, Peng-zhe Lin, Rui Liu, Pei Zhou. Skin friction reduction characteristics of variable ovoid non-smooth surfaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 59-66.
[3] Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan. A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 632-645.
[4] Zhen-yu Wang, Yang Zhao, Guo-wei Ma, Zhi-guo He. A numerical study on the high-velocity impact behavior of pressure pipes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 443-453.
[5] Han-jiang Lai, Jun-jie Zheng, Rong-jun Zhang, Ming-juan Cui. Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 803-817.
[6] Qi-hua Ran, Qun Qian, Wei Li, Xu-dong Fu, Xiao Yu, Yue-ping Xu. Impact of earthquake-induced-landslides on hydrologic response of a steep mountainous catchment: a case study of the Wenchuan earthquake zone[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 131-142.
[7] Peng-fei Li, Qian Fang, Ding-li Zhang. Analytical solutions of stresses and displacements for deep circular tunnels with liners in saturated ground[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 395-404.
[8] Zhi-jiang Jin, Lin Wei, Li-long Chen, Jin-yuan Qian, Ming Zhang. Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(2): 137-146.
[9] Hai-jun Xuan, Lu-lu Liu, Yi-ming Feng, Qing He, Juan-juan Li. Containment of high-speed rotating disk fragments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(9): 665-673.
[10] Nu-wen Xu, Chun-an Tang, Hong Li, Feng Dai, Ke Ma, Jing-dong Shao, Ji-chang Wu. Excavation-induced microseismicity: microseismic monitoring and numerical simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 445-460.
[11] Xiao-bin Zhang, Wei Zhang, Xue-jun Zhang. Modeling droplet vaporization and combustion with the volume of fluid method at a small Reynolds number[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(5): 361-374.
[12] Meng Ma, Valéri Markine, Wei-ning Liu, Yang Yuan, Feng Zhang. Metro train-induced vibrations on historic buildings in Chengdu, China[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 782-793.
[13] Min Zhang, Xing-hua Wang, Guang-cheng Yang, You Wang. Numerical investigation of the convex effect on the behavior of crossing excavations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 747-757.
[14] Chao-rong Zheng, Yao-chun Zhang. Numerical investigation on the drag reduction properties of a suction controlled high-rise building[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(7): 477-487.
[15] Jin WANG, Xu-wen ZHANG, Zhi-ping CHEN, Jian-hua LAN. Development on test equipment of coal slurry mixing tank[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(3): 175-180.