Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2016, Vol. 17 Issue (10): 803-817    DOI: 10.1631/jzus.A1500302
Articles     
Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation
Han-jiang Lai, Jun-jie Zheng, Rong-jun Zhang, Ming-juan Cui
Institute of Geotechnical and Underground Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Piled embankments are widely used in highway and railway engineering due to their economy and efficiency in overcoming several issues encountered in constructing embankments over weak soils. Soil arching, caused by the pile-subsoil relative displacement (Δs), plays an important role in reducing the embankment load falling on weak soil, however, the fundamental characteristics (e.g., formation and features) of soil arching remain poorly understood. In this study, a series of discrete element method (DEM) modellings are performed to study the formation and features of soil arching with the variation of Δs in piled embankments with or without geosynthetic reinforcement. Firstly, calibration for the modelling parameters is carried out by comparing the DEM results with the experimental data obtained from the existing literature. Secondly, the analysis of the macro- and micro-behaviours is performed in detail. Finally, a parametric study is conducted in an effort to identify the influences of three key factors on soil arching: the friction coefficient of the embankment fill (f), the embankment height (h), and the pile clear spacing (sa). Numerical results indicate that Δs is a key factor governing the formation and features of soil arching in embankments. To be specific, soil arching gradually evolves from two inclined shear planes at a small Δs to a hemispherical arch at a relatively large Δs. Then, with a continuous increase in Δs, the soil arching height gradually increases and finally approaches a constant value of 0.8(sa) (i.e., the maximum soil arching height). For a given case, the higher the soil arching height, the greater the degree of soil arching effect. The parametric study shows that the friction coefficient of the embankment fill has a negligible influence on the formation and features of soil arching. However, embankment height is a key factor governing the formation and features of soil arching. In addition, pile clear spacing has a significant effect on the formation of soil arching, but not on its features.

Key wordsPiled embankment      Numerical simulation      Discrete element method (DEM)      Soil arching      Formation      Features     
Received: 04 November 2015      Published: 08 October 2016
CLC:  U213.11  
Cite this article:

Han-jiang Lai, Jun-jie Zheng, Rong-jun Zhang, Ming-juan Cui. Visualization of the formation and features of soil arching within a piled embankment by discrete element method simulation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 803-817.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1500302     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2016/V17/I10/803

[1] Dan-da Shi, Jian-feng Xue, Zhen-ying Zhao, Yan-cheng Yang. Effect of bedding direction of oval particles on the behavior of dense granular assemblies under simple shear[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 346-362.
[2] Yi-feng Wu, Hao Wang, Ai-qun Li, Dong-ming Feng, Ben Sha, Yu-ping Zhang. Explicit finite element analysis and experimental verification of a sliding lead rubber bearing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 363-376.
[3] Xiao-wen Song, Peng-zhe Lin, Rui Liu, Pei Zhou. Skin friction reduction characteristics of variable ovoid non-smooth surfaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 59-66.
[4] Tian-tian Zhang, Wei Huang, Zhen-guo Wang, Li Yan. A study of airfoil parameterization, modeling, and optimization based on the computational fluid dynamics method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 632-645.
[5] Zhen-yu Wang, Yang Zhao, Guo-wei Ma, Zhi-guo He. A numerical study on the high-velocity impact behavior of pressure pipes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 443-453.
[6] Xiao-ting Zhai, Hao-jie Yu, Li Wang, Zheng Deng, Zain-ul Abdin, Yong-sheng Chen. Synthesis of ferrocene- and azobenzene-based compounds for anion recognition[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(2): 144-154.
[7] Guo-huan Bao, Yi Chen, Ji-en Ma, You-tong Fang, Liang Meng, Shu-min Zhao, Xin Wang, Jia-bin Liu. Microstructure and properties of cold drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe alloys[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 622-629.
[8] Lin Ba, Zhen-peng He, Yue-hui Liu, Gui-chang Zhang. Analysis of piston-pin lubrication considering the effects of structure deformation and cavitation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(6): 443-463.
[9] Jiang-xin Yang, Jia-yan Guan, Xue-feng Ye, Bo Li, Yan-long Cao. Effects of geometric and spindle errors on the quality of end turning surface[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(5): 371-386.
[10] Qi-hua Ran, Qun Qian, Wei Li, Xu-dong Fu, Xiao Yu, Yue-ping Xu. Impact of earthquake-induced-landslides on hydrologic response of a steep mountainous catchment: a case study of the Wenchuan earthquake zone[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(2): 131-142.
[11] Zi-qin Jiang, Yan-lin Guo, Xiao-an Wang, Bin Huang. Design method of the pinned external integrated buckling-restrained braces with extended core. Part I: theoretical derivation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 781-792.
[12] Zi-qin Jiang, Yan-lin Guo, Jing-zhong Tong, Xing Yuan. Design method of the pinned external integrated buckling-restrained braces with extended core. Part II: finite element numerical verification[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 793-804.
[13] Hui Liu, Ming-hua He, Jia Guo, Yong-jiu Shi, Zhao-xin Hou, Lu-lu Liu. Design-oriented modeling of circular FRP-wrapped concrete columns after sustained axial compression[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 47-58.
[14] Peng-fei Li, Qian Fang, Ding-li Zhang. Analytical solutions of stresses and displacements for deep circular tunnels with liners in saturated ground[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 395-404.
[15] Chi Wang, Yong-fu Xu, Ping Dong. Working characteristics of concrete-cored deep cement mixing piles under embankments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 419-431.