Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2005, Vol. 6 Issue ( 7): 18-    DOI: 10.1631/jzus.2005.A0716
    
Design and analysis of superconducting magnets of a new mixed Maglev model*
FANG You-tong, GAO Chong-yang, YAO Ying-ying
School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; School of Mechanical and Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  A new electromagnetic suspension model using a combination of high temperature superconductors (HTS) and copper conductors is proposed in this paper. A feasibility study showed that the magnets of our model can generate the 250 kg vertical suspension force. Three dimensional FEM and Design Sensitivity Analysis using the levitation gap length and cross sectional dimensions of the HTS magnets as design parameters were conducted to obtain the optimal shape of the cross section and the configuration of the HTS magnet. It was found that the gap length when optimized HTS magnet was used was much larger than that when copper conductor magnet was used, while the HTS coil volume was minimum, and the perpendicular field along the outer surface of the HTS coil was less than 0.12 T.

Key wordsMechanical and Energy Engineering HTS      Maglev      Magnet      FEM     
Received: 01 February 2005     
CLC:  U266  
Cite this article:

FANG You-tong, GAO Chong-yang, YAO Ying-ying. Design and analysis of superconducting magnets of a new mixed Maglev model*. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 7): 18-.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2005.A0716     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2005/V6/I 7/18

[1] Mi Yan, Chen Wu. Soft magnetic composites with enhanced performance and their key production technologies[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(3): 163-166.
[2] Xiao-wei Zhang, Zhi-feng Tang, Fu-zai Lv, Xiao-hong Pan. Excitation of axisymmetric and non-axisymmetric guided waves in elastic hollow cylinders by magnetostrictive transducers[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(3): 215-229.
[3] Xiao-yan Huang, Jian-cheng Zhang, Chuan-ming Sun, Zhang-wen Huang, Qin-fen Lu, You-tong Fang, Li Yao. A combined simulation of high speed train permanent magnet traction system using dynamic reluctance mesh model and Simulink[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 607-615.
[4] Zheng Tan, Xue-guan Song, Bing Ji, Zheng Liu, Ji-en Ma, Wen-ping Cao. 3D thermal analysis of a permanent magnet motor with cooling fans[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 616-621.
[5] Jing-hua Xu, Shu-you Zhang, Jian-rong Tan, Zhen Zhao. Multi-actuated mechanism design considering structure flexibility using correlated performance reinforcing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 864-873.
[6] Satoru Sone. Comparison of the technologies of the Japanese Shinkansen and Chinese High-speed Railways[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 769-780.
[7] Hong-yan Wang, Li-hua Tang, Yuan Guo, Xiao-biao Shan, Tao Xie. A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(9): 711-722.
[8] Jin Shi, Wen-shan Fang, Ying-jie Wang, Yang Zhao. Measurements and analysis of track irregularities on high speed maglev lines[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 385-394.
[9] Xiang-kai Meng, Shao-xian Bai, Xu-dong Peng. An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 172-184.
[10] Wen-jie Zhou, Xue-song Wei, Xian-zhu Wei, Le-qin Wang. Numerical analysis of a nonlinear double disc rotor-seal system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 39-52.
[11] Zhong-xiu Fei, Shui-guang Tong, Chao Wei. Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 268-280.
[12] Xiao-biao Shan, Shi-wei Guan, Zhang-shi Liu, Zhen-long Xu, Tao Xie. A new energy harvester using a piezoelectric and suspension electromagnetic mechanism[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(12): 890-897.
[13] Y. Faradjian Mohtaram, J. Taheri Kahnamouei, M. Shariati, B. Behjat. Experimental and numerical investigation of buckling in rectangular steel plates with groove-shaped cutouts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 469-480.
[14] Zhen Liu, Xiong (Bill) Yu, Jun-liang Tao, Ye Sun. Multiphysics extension to physically based analyses of pipes with emphasis on frost actions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 877-887.
[15] Jie Jiang, Xue-tao Wang, Li-ping Zhu, Li-qiang Zhang, Zhi-guo Yang, Zhi-zhen Ye. Electrical and magnetic properties of ZnNiO thin films deposited by pulse laser deposition[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(7): 561-566.