Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2005, Vol. 6 Issue ( 5): 5-    DOI: 10.1631/jzus.2005.A0378
    
Control DHT maintenance costs with session heterogeneity
ZOU Fu-tai, WU Zeng-de, ZHANG Liang, MA Fan-yuan
Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200030, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The maintaining overheads of Distributed Hash Table (DHT) topology have recently received considerable attention. This paper presents a novel SHT (Session Heterogeneity Topology) model, in which DHT is reconstructed with session heterogeneity. SHT clusters nodes by means of session heterogeneity among nodes and selects the stable nodes as the participants of DHT. With an evolving process, this model gradually makes DHT stable and reliable. Therefore the high maintaining overheads for DHT are effectively controlled. Simulation with real traces of session distribution showed that the maintaining overheads are reduced dramatically and that the data availability is greatly improved.

Key wordsComputer Peer-to-peer (P2P)      Distributed Hash Table (DHT)      Finite element method      Session heterogeneity      Topology model     
Received: 10 January 2004     
CLC:  TP393  
Cite this article:

ZOU Fu-tai, WU Zeng-de, ZHANG Liang, MA Fan-yuan. Control DHT maintenance costs with session heterogeneity. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 5): 5-.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2005.A0378     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2005/V6/I 5/5

[1] Qi-yin Zhu, Ze-xiang Wu, Yan-ling Li, Chang-jie Xu, Jian-hua Wang, Xiao-he Xia. A modified creep index and its application to viscoplastic modelling of soft clays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 272-281.
[2] Xiang-kai Meng, Shao-xian Bai, Xu-dong Peng. An efficient adaptive finite element method algorithm with mass conservation for analysis of liquid face seals[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 172-184.
[3] Jie Zhang, Guang-xu Han, Xin-biao Xiao, Rui-qian Wang, Yue Zhao, Xue-song Jin. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 1002-1018.
[4] Xin Zhao, Ze-feng Wen, Heng-yu Wang, Xue-song Jin, Min-hao Zhu. Modeling of high-speed wheel-rail rolling contact on a corrugated rail and corrugation development[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(12): 946-963.
[5] Wen-jie Zhou, Xue-song Wei, Xian-zhu Wei, Le-qin Wang. Numerical analysis of a nonlinear double disc rotor-seal system[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 39-52.
[6] Zhong-xiu Fei, Shui-guang Tong, Chao Wei. Investigation of the dynamic characteristics of a dual rotor system and its start-up simulation based on finite element method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 268-280.
[7] Y. Faradjian Mohtaram, J. Taheri Kahnamouei, M. Shariati, B. Behjat. Experimental and numerical investigation of buckling in rectangular steel plates with groove-shaped cutouts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 469-480.
[8] Zhen Liu, Xiong (Bill) Yu, Jun-liang Tao, Ye Sun. Multiphysics extension to physically based analyses of pipes with emphasis on frost actions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 877-887.
[9] Heng Yuan, Kyu-jin Kim, Won-seok Kang, Byoung-ho Kang, Se-hyuk Yeom, Jae-ho Kim, Shin-won Kang. High-efficiency technique based on dielectrophoresis for assembling metal, semiconductor, and polymer nanorods[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(5): 368-373.
[10] Cheng Huang, Yan Bao, Dai Zhou, Jin-quan Xu. Large eddy simulation for wind field analysis based on stabilized finite element method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(4): 278-290.
[11] Su-qing Huang, Ju Chen, Wei-liang Jin. Numerical investigation and design of thin-walled complex section steel columns[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(2): 131-138.
[12] Xue-cheng Bian, Chang Chao, Wan-feng Jin, Yun-min Chen. A 2.5D finite element approach for predicting ground vibrations generated by vertical track irregularities[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 885-894.
[13] Ji-en Ma, Bin Zhang, Xiao-yan Huang, You-tong Fang, Wen-ping Cao. Design and analysis of the hybrid excitation rail eddy brake system of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 936-944.
[14] Yu-geng Tang. Probability-based method using RFEM for predicting wall deflection caused by excavation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 737-746.
[15] Cheng Huang, Dai Zhou, Yan Bao. A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 33-45.