Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2002, Vol. 3 Issue (4): 381-386    DOI: 10.1631/jzus.2002.0381
Energy & Environment Engineering     
Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow
ZHOU Jin-song, LUO Zhong-yang, GAO Xiang, NI Ming-jiang, CEN Ke-fa
Clean Energy and Environment Engineering Key Lab of Ministry of Education, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Heat transfer between gas-solid multiphase flow and tubes occurs in m a ny industry processes, such as circulating fluidized bed process, pneumatic conv eying process, chemical process, drying process, etc. This paper focuses on the influence of the presence of particles on the heat transfer between a tube and g as-solid suspension. The presence of particles causes positive enhancement of h e at transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low solid loading ratio (Ms of les s than 0.05 kg/kg). A useful correlation incorporating solid loading ratio, particle s ize and flow Reynolds number was derived from experimental data. In addition, the k-ε two-equation model and the Fluctuation-Spectrum- Random-Trajecto ry Model (FSRT Model) are used to simulate the flow field and heat transfer of the gas-ph a se and the solid-phase, respectively. Through coupling of the two phases the mo d el can predict the local and total heat transfer characteristics of tube in gas - solid cross flow. For the total heat transfer enhancement due to particles loadi ng the model predictions agreed well with experimental data.

Key wordsMultiphase flow      Heat transfer      Particle loading     
Received: 26 November 2001     
CLC:  TP124  
Cite this article:

ZHOU Jin-song, LUO Zhong-yang, GAO Xiang, NI Ming-jiang, CEN Ke-fa. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2002, 3(4): 381-386.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2002.0381     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2002/V3/I4/381

[1] Kai Zhang, Hong-bing Xiong, Xue-ming Shao. Dynamic modeling of micro- and nano-sized particles impinging on the substrate during suspension plasma spraying[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 733-744.
[2] Jing-cheng Liu, Shu-you Zhang, Xin-yue Zhao, Guo-dong Yi, Zhi-yong Zhou. Influence of fin arrangement on fluid flow and heat transfer in the inlet of a plate-fin heat exchanger[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(4): 279-294.
[3] Ting-zhen Ming, Yan Ding, Jin-le Gui, Yong-xin Tao. Transient thermal behavior of a microchannel heat sink with multiple impinging jets[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 894-909.
[4] Yong Zhang, Yan-yong Xiang. A semi-analytical method and its application for calculating the thermal stress and displacement of sparsely fractured rocks with water flow and heat transfer[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 922-934.
[5] Xue-jun Zhang, Ke-qing Zheng, Ling-shi Wang, Wei Wang, Min Jiang, Sheng-ying Zhao. Analysis of ice slurry production by direct contact heat transfer of air and water solution[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 583-588.
[6] Ke Tang, Juan Yu, Tao Jin, Zhi-hua Gan. Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(6): 427-434.
[7] Wei Lu, Yan-yong Xiang. Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(12): 958-968.
[8] Mohammad Mohsen Shahmardan, Mahmood Norouzi, Mohammad Hassan Kayhani, Amin Amiri Delouei. An exact analytical solution for convective heat transfer in rectangular ducts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(10): 768-781.
[9] Xue-ming Shao, Jun Wan, Da-wei Chen, Hong-bing Xiong. Aerodynamic modeling and stability analysis of a high-speed train under strong rain and crosswind conditions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(12): 964-970.
[10] Jundika C. Kurnia, Agus P. Sasmito, Arun S. Mujumdar. Evaluation of the heat transfer performance of helical coils of non-circular tubes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 63-70.
[11] Tao JIN, Jian-ping HONG, Hao ZHENG, Ke TANG, Zhi-hua GAN. Measurement of boiling heat transfer coefficient in liquid nitrogen bath by inverse heat conduction method[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(5): 691-696.
[12] Shui-xuan CHEN, Jun ZOU, Xin FU. Coupled models of heat transfer and phase transformation for the run-out table in hot rolling[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(7): 932-939.
[13] Rafael CORTELL. A numerical analysis to the non-linear fin problem[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(5): 648-653.
[14] Hua ZHU, Bo ZHUANG, Jin-jun TAN, Rong-hua HONG. Theoretical and experimental research on heat transfer performance of the semi-open heat pipe[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(3): 410-415.
[15] SAHOO Bikash, SHARMA H.G.. Existence and uniqueness theorem for flow and heat transfer of a non-Newtonian fluid over a stretching sheet[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(5): 766-771.