Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (5): 380-390    DOI: 10.1631/FITEE.1400421
    
HAPE3D—a new constructive algorithm for the 3D irregular packing problem
Xiao Liu, Jia-min Liu, An-xi Cao, Zhuang-le Yao
School of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510640, China; School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China; College of Ocean Science and Engineer, Shanghai Maritime University, Shanghai 201306, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  We propose a new constructive algorithm, called HAPE3D, which is a heuristic algorithm based on the principle of minimum total potential energy for the 3D irregular packing problem, involving packing a set of irregularly shaped polyhedrons into a box-shaped container with fixed width and length but unconstrained height. The objective is to allocate all the polyhedrons in the container, and thus minimize the waste or maximize profit. HAPE3D can deal with arbitrarily shaped polyhedrons, which can be rotated around each coordinate axis at different angles. The most outstanding merit is that HAPE3D does not need to calculate no-fit polyhedron (NFP), which is a huge obstacle for the 3D packing problem. HAPE3D can also be hybridized with a meta-heuristic algorithm such as simulated annealing. Two groups of computational experiments demonstrate the good performance of HAPE3D and prove that it can be hybridized quite well with a meta-heuristic algorithm to further improve the packing quality.

Key words3D packing problem      Layout design      Simulation      Optimization      Constructive algorithm      Meta-heuristics     
Received: 08 December 2014      Published: 05 May 2015
CLC:  TP391.7  
Cite this article:

Xiao Liu, Jia-min Liu, An-xi Cao, Zhuang-le Yao. HAPE3D—a new constructive algorithm for the 3D irregular packing problem. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 380-390.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1400421     OR     http://www.zjujournals.com/xueshu/fitee/Y2015/V16/I5/380


一种新型三维不规则排样构造算法HAPE3D

目的:现实工程中存在大量排样问题,其中最具挑战的是三维不规则排样问题。研究该类问题的首要难题是将三维不规则排样问题转化为一个优化问题。本文提供一个构造算法HAPE3D,将不规则三维排样问题转化成一个组合优化问题。
创新点:提出的新型不规则排样构造算法HAPE3D无需计算临界多面体(NFP),并允许零件灵活旋转。
方法:首先,用最小势能原理解释三维不规则排样问题中零件的运动机理(图5)。然后,提出HAPE3D三个重要技术环节:(1)三维体的分离判据(图6);(2)点在三维体内的判据(图7);(3)多面体靠接算法(图8、9)。接着,给出HAPE3D的算法流程。最后通过两个算例检验算法可行性。
结论:HAPE3D是一种非常可靠的三维不规则排样算法。它区别于其它同类算法的最大特点是无需计算NFP,并在保持零件原有面貌(不需要将零件分解为多个长方体)的基础上允许零件旋转。HAPE3D可方便地与其它启发式算法(比如SA)结合形成混合启发式算法,从而进一步提高排样效率,其计算速度还有很大改进空间。

关键词: 三维排样,  布置设计,  仿真,  优化,  构造算法,  现代启发式算法 
[1] Lin CAO , Shuo TANG , Dong ZHANG. Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(7): 882-897.
[2] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[3] Hamid Reza Boveiri. An incremental ant colony optimization based approach to task assignment to processors for multiprocessor scheduling[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 498-510.
[4] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[5] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[6] He Hao, Wei-zhong Fei, Dong-min Miao, Meng-jia Jin, Jian-xin Shen. Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 814-824.
[7] Tian-qi Wu, Min Yao, Jian-hua Yang. Dolphin swarm algorithm[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 717-729.
[8] Jing-fa Liu, Liang Hao, Gang Li, Yu Xue, Zhao-xia Liu, Juan Huang. Multi-objective layout optimization of a satellite module using the Wang-Landau sampling method with local search[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 527-542.
[9] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. Intelligent computing budget allocation for on-road trajectory planning based on candidate curves[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[10] Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 338-347.
[11] Friederike Wall. Organizational dynamics in adaptive distributed search processes: effects on performance and the role of complexity[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 283-295.
[12] Rui Zhao, Gui-he Qin, Jia-qiao Liu. A rectangle bin packing optimization approach to the signal scheduling problem in the FlexRay static segment[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 375-388.
[13] Gao-qi He, Yi Jin, Qi Chen, Zhen Liu, Wen-hui Yue, Xing-jian Lu. Shadow obstacle model for realistic corner-turning behavior in crowd simulation[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 200-211.
[14] Xin Li, Jin Sun, Fu Xiao, Jiang-shan Tian. An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 160-172.
[15] Jing-fa Liu, Juan Huang, Gang Li, Wen-jie Liu, Ting-zhao Guan, Liang Hao. A new energy landscape paving heuristic for satellite module layouts[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1031-1043.