Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (3): 200-211    DOI: 10.1631/FITEE.1500253
    
Shadow obstacle model for realistic corner-turning behavior in crowd simulation
Gao-qi He, Yi Jin, Qi Chen, Zhen Liu, Wen-hui Yue, Xing-jian Lu
Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; MOE Key Laboratory of Geographic Information Science, East China Normal University, Shanghai 200241, China; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China; College of Information Science and Technology, Ningbo University, Ningbo 315211, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper describes a novel model known as the shadow obstacle model to generate a realistic corner-turning behavior in crowd simulation. The motivation for this model comes from the observation that people tend to choose a safer route rather than a shorter one when turning a corner. To calculate a safer route, an optimization method is proposed to generate the corner-turning rule that maximizes the viewing range for the agents. By combining psychological and physical forces together, a full crowd simulation framework is established to provide a more realistic crowd simulation. We demonstrate that our model produces a more realistic corner-turning behavior by comparison with real data obtained from the experiments. Finally, we perform parameter analysis to show the believability of our model through a series of experiments.

Key wordsCorner-turning behavior      Crowd simulation      Safety awareness      Rule-based model     
Received: 06 August 2015      Published: 07 March 2016
CLC:  TP391  
Cite this article:

Gao-qi He, Yi Jin, Qi Chen, Zhen Liu, Wen-hui Yue, Xing-jian Lu. Shadow obstacle model for realistic corner-turning behavior in crowd simulation. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 200-211.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500253     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I3/200


基于影子障碍物模型的真实感人群转弯行为模拟

目的:在人群仿真领域中,对行人转弯行为的模拟有待深入研究。现有的模型(如Rojas等)采用预定义曲线的方法模拟行人转弯轨迹,模拟结果缺乏真实感,并不能体现出人群行为的多样性以及行人的心理特征。为了模拟更加具有真实感的人群转弯行为,本文考虑了行人在转弯时扩大视野的安全决策行为,提出了影子障碍物模型和一个完整的、有效的人群模拟框架。
创新点:提出影子障碍物模型,以模拟行人转弯时扩大视野的安全决策行为;提出了集成心理力和物理力的人群模拟框架。
方法:建立影子障碍物相关概念;以行人扩大视野为切入点,制定模拟转弯行为的相关规则,可以判断行人是否处于转弯状态以及如何获得最佳的速度方向。结合全局路径规划、局部行为模拟和物理模拟建立了人群仿真框架。利用该框架进行相关实验,验证模型的准确性和有效性。
结论:本文的模型可以较真实地模拟出行人转弯轨迹(图9);与Rojas等人的模拟结果相比,本文的模型可以较好地刻画行人的心理特征和人群行为的多样性(图10、15)

关键词: 转弯行为,  人群仿真,  安全心理,  基于规则的模型 
[1] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[2] Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li. Attention-based encoder-decoder model for answer selection in question answering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 535-544.
[3] Lin-bo Qiao, Bo-feng Zhang, Jin-shu Su, Xi-cheng Lu. A systematic review of structured sparse learning[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 445-463.
[4] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . A robust object tracking framework based on a reliable point assignment algorithm[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 545-558.
[5] Wen-yan Xiao, Ming-wen Wang, Zhen Weng, Li-lin Zhang, Jia-li Zuo. Corpus-based research on English word recognition rates in primary school and word selection strategy[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 362-372.
[6] . A quality requirements model and verification approach for system of systems based on description logic[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 346-361.
[7] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[8] Hui Chen, Bao-gang Wei, Yi-ming Li, Yong-huai Liu, Wen-hao Zhu. An easy-to-use evaluation framework for benchmarking entity recognition and disambiguation systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 195-205.
[9] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[10] Li Weigang. First and Others credit-assignment schema for evaluating the academic contribution of coauthors[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 180-194.
[11] Yue-ting Zhuang, Fei Wu, Chun Chen, Yun-he Pan. Challenges and opportunities: from big data to knowledge in AI 2.0[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 3-14.
[12] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[13] Yong-hong Tian, Xi-lin Chen, Hong-kai Xiong, Hong-liang Li, Li-rong Dai, Jing Chen, Jun-liang Xing, Jing Chen, Xi-hong Wu, Wei-min Hu, Yu Hu, Tie-jun Huang, Wen Gao. Towards human-like and transhuman perception in AI 2.0: a review[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 58-67.
[14] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang, Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, Wen Gao. Cross-media analysis and reasoning: advances and directions[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 44-57.
[15] Le-kui Zhou, Si-liang Tang, Jun Xiao, Fei Wu, Yue-ting Zhuang. Disambiguating named entities with deep supervised learning via crowd labels[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 97-106.