Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (8): 717-729    DOI: 10.1631/FITEE.1500287
    
Dolphin swarm algorithm
Tian-qi Wu, Min Yao, Jian-hua Yang
School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are difficult to deal with using traditional methods. At present, there are many well-implemented algorithms, such as particle swarm optimization, genetic algorithm, artificial bee colony algorithm, and ant colony optimization. These algorithms have already shown favorable performances. However, with the objects becoming increasingly complex, it is becoming gradually more difficult for these algorithms to meet human’s demand in terms of accuracy and time. Designing a new algorithm to seek better solutions for optimization problems is becoming increasingly essential. Dolphins have many noteworthy biological characteristics and living habits such as echolocation, information exchanges, cooperation, and division of labor. Combining these biological characteristics and living habits with swarm intelligence and bringing them into optimization problems, we propose a brand new algorithm named the ‘dolphin swarm algorithm’ in this paper. We also provide the definitions of the algorithm and specific descriptions of the four pivotal phases in the algorithm, which are the search phase, call phase, reception phase, and predation phase. Ten benchmark functions with different properties are tested using the dolphin swarm algorithm, particle swarm optimization, genetic algorithm, and artificial bee colony algorithm. The convergence rates and benchmark function results of these four algorithms are compared to testify the effect of the dolphin swarm algorithm. The results show that in most cases, the dolphin swarm algorithm performs better. The dolphin swarm algorithm possesses some great features, such as first-slow-then-fast convergence, periodic convergence, local-optimum-free, and no specific demand on benchmark functions. Moreover, the dolphin swarm algorithm is particularly appropriate to optimization problems, with more calls of fitness functions and fewer individuals.

Key wordsSwarm intelligence      Bio-inspired algorithm      Dolphin      Optimization     
Received: 04 September 2015      Published: 05 August 2016
CLC:  TP391  
Cite this article:

Tian-qi Wu, Min Yao, Jian-hua Yang. Dolphin swarm algorithm. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 717-729.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500287     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I8/717


海豚群算法

概要:群体智能算法采取分布式解决问题的策略,已成功应用于很多传统算法难以解决的优化问题。目前已有粒子群算法、遗传算法、蜂群算法、蚁群算法等已经成功实现且效果良好的算法,但在优化对象日益复杂的今天,这些算法越来越难以满足人们对精度和时间的要求,而改进这些算法所带来的收益也越来越低。在这种情况下,设计一种新的算法来更好地解决优化问题变得越来越有意义。海豚有很多值得关注的生物特性和生活习性,如回声定位、信息交流、合作分工等。通过将这些生物特性和生活习性与群体智能的思想结合起来,引入优化问题中,我们提出了一种新的算法——海豚群算法,并给出了算法的相关定义,详细阐述了算法中搜寻、呼叫、接受、捕猎四个关键阶段。为了验证海豚群算法的效果,使用了10个性质各异的基准函数对海豚群算法以及粒子群算法、遗传算法、蜂群算法进行实验,并将4个函数的收敛速度和基准函数结果进行比较。实验结果表明,海豚群算法在大多数情况下,特别是在低维单峰函数、高维多峰函数、步长函数、带随机变量的函数中表现良好,具有收敛速度先慢后快、阶段性收敛、不易陷入局部最优、对基准函数具体性质没有要求等特点,尤其适用于适应度函数调用次数较多、使用个体较少的优化问题。

关键词: 群体智能,  仿生算法,  海豚,  优化 
[1] Lin CAO , Shuo TANG , Dong ZHANG. Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(7): 882-897.
[2] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[3] Hamid Reza Boveiri. An incremental ant colony optimization based approach to task assignment to processors for multiprocessor scheduling[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 498-510.
[4] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[5] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[6] Bo-hu Li, Hui-yang Qu, Ting-yu Lin, Bao-cun Hou, Xiang Zhai, Guo-qiang Shi, Jun-hua Zhou, Chao Ruan. A swarm intelligence design based on a workshop of meta-synthetic engineering[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 149-152.
[7] He Hao, Wei-zhong Fei, Dong-min Miao, Meng-jia Jin, Jian-xin Shen. Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 814-824.
[8] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. Intelligent computing budget allocation for on-road trajectory planning based on candidate curves[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[9] Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 338-347.
[10] Rui Zhao, Gui-he Qin, Jia-qiao Liu. A rectangle bin packing optimization approach to the signal scheduling problem in the FlexRay static segment[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 375-388.
[11] Xin Li, Jin Sun, Fu Xiao, Jiang-shan Tian. An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 160-172.
[12] Jing-fa Liu, Juan Huang, Gang Li, Wen-jie Liu, Ting-zhao Guan, Liang Hao. A new energy landscape paving heuristic for satellite module layouts[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1031-1043.
[13] Hao XIE,Ruo-feng TONG. Image meshing via hierarchical optimization[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(1): 32-40.
[14] Zi-wu Ren, Zhen-hua Wang, Li-ning Sun. A hybrid biogeography-based optimization method for the inverse kinematics problem of an 8-DOF redundant humanoid manipulator[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 607-616.
[15] Xiao Liu, Jia-min Liu, An-xi Cao, Zhuang-le Yao. HAPE3D—a new constructive algorithm for the 3D irregular packing problem[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 380-390.