Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2012, Vol. 13 Issue (12): 891-900    DOI: 10.1631/jzus.C1200135
    
Optimizing checkpoint for scientific simulations
Xi-sheng Xiao, Ying-ping Huang, Xi-hui Zhang
Economics & Management College, Southwest Jiaotong University, Chengdu 610031, China; Industrial and Commercial College, Guizhou University of Finance and Economics, Guiyang 550003, China; College of Business, University of North Alabama, Florence, AL 35632, USA
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  It is extremely time-consuming to restart a long-running simulation from the beginning when a failure occurs. Checkpointing is a viable solution that enables simulations to be resumed from the point of failure. We study three models to determine the optimal checkpoint interval between contiguous checkpoints so that the total execution time is minimized and we demonstrate that optimal checkpointing can facilitate self-optimizing. This study greatly advances our knowledge of and practice in optimizing long-running scientific simulations.

Key wordsCheckpoint      Long-running      Optimizing      Simulation     
Received: 12 May 2012      Published: 09 December 2012
CLC:  O242  
Cite this article:

Xi-sheng Xiao, Ying-ping Huang, Xi-hui Zhang. Optimizing checkpoint for scientific simulations. Front. Inform. Technol. Electron. Eng., 2012, 13(12): 891-900.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1200135     OR     http://www.zjujournals.com/xueshu/fitee/Y2012/V13/I12/891


Optimizing checkpoint for scientific simulations

It is extremely time-consuming to restart a long-running simulation from the beginning when a failure occurs. Checkpointing is a viable solution that enables simulations to be resumed from the point of failure. We study three models to determine the optimal checkpoint interval between contiguous checkpoints so that the total execution time is minimized and we demonstrate that optimal checkpointing can facilitate self-optimizing. This study greatly advances our knowledge of and practice in optimizing long-running scientific simulations.

关键词: Checkpoint,  Long-running,  Optimizing,  Simulation 
[1] Wen-zhe Zhang, Kai Lu, Mikel LUJáN, Xiao-ping Wang, Xu Zhou. Fine-grained checkpoint based on non-volatile memory[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 220-234.
[2] Friederike Wall. Organizational dynamics in adaptive distributed search processes: effects on performance and the role of complexity[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 283-295.
[3] Gao-qi He, Yi Jin, Qi Chen, Zhen Liu, Wen-hui Yue, Xing-jian Lu. Shadow obstacle model for realistic corner-turning behavior in crowd simulation[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 200-211.
[4] Xiao Liu, Jia-min Liu, An-xi Cao, Zhuang-le Yao. HAPE3D—a new constructive algorithm for the 3D irregular packing problem[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 380-390.
[5] Kai Huang, Xiao-xu Zhang, Si-wen Xiu, Dan-dan Zheng, Min Yu, De Ma, Kai Huang, Gang Chen, Xiao-lang Yan. Profiling and annotation combined method for multimedia application specific MPSoC performance estimation[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 135-151.
[6] Guangdong Tian, Hua Ke, Xiaowei Chen. Fuzzy cost-profit tradeoff model for locating a vehicle inspection station considering regional constraints[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1138-1146.
[7] Bin Chen, Lao-bing Zhang, Xiao-cheng Liu, Hans Vangheluwe. Activity-based simulation using DEVS: increasing performance by an activity model in parallel DEVS simulation[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(1): 13-30.
[8] Lin-jun Fan, Yun-xiang Ling, Xing-tao Zhang, Jun Tang. Quantitative evaluation of model consistency evolution in compositional service-oriented simulation using a connected hyper-digraph[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(1): 1-12.
[9] Li-heng Lou, Ling-ling Sun, Jun Liu, Hai-jun Gao. An efficient PSP-based model for optimized cross-coupled MOSFETs in voltage controlled oscillator[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 205-213.
[10] Lu-jun Wang, Tao Yang, Da-min Zhang, Zheng-yu Lu. A high performance simulation methodology for multilevel grid-connected inverters[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(7): 544-551.
[11] Yuan-hong Shen, Xiao-hu Yang. A self-optimizing QoS-aware service composition approach in a context sensitive environment[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(3): 221-238.
[12] Zhi-xun Su, Zhi-yang Li, Yuan-di Zhao, Jun-jie Cao. Curvature-aware simplification for point-sampled geometry[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(3): 184-194.
[13] Xia Zhang, Hao Wang, Xu-dong Zheng, Shi-chang Hu, Zhong-he Jin. Modeling and noise analysis of a fence structure micromachined capacitive accelerometer system[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(12): 1009-1015.
[14] Fang-wen Li, Xu-kun Shen. A component-based aircraft instrument rapid modeling tool[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(11): 911-918.