Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (12): 1138-1146    DOI: 10.1631/jzus.C1400116
    
Fuzzy cost-profit tradeoff model for locating a vehicle inspection station considering regional constraints
Guangdong Tian, Hua Ke, Xiaowei Chen
Transportation College, Northeast Forestry University, Harbin 150040, China; School of Economics and Management, Tongji University, Shanghai 200092, China; Department of Risk Management and Insurance, Nankai University, Tianjin 300071, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Facility location allocation (FLA) is one of the important issues in the logistics and transportation fields. In practice, since customer demands, allocations, and even locations of customers and facilities are usually changing, the FLA problem features uncertainty. To account for this uncertainty, some researchers have addressed the fuzzy profit and cost issues of FLA. However, a decision-maker needs to reach a specific profit, minimizing the cost to target customers. To handle this issue it is essential to propose an effective fuzzy cost-profit tradeoff approach of FLA. Moreover, some regional constraints can greatly influence FLA. By taking a vehicle inspection station as a typical automotive service enterprise example, and combined with the credibility measure of fuzzy set theory, this work presents new fuzzy cost-profit tradeoff FLA models with regional constraints. A hybrid algorithm integrating fuzzy simulation and genetic algorithms (GA) is proposed to solve the proposed models. Some numerical examples are given to illustrate the proposed models and the effectiveness of the proposed algorithm.

Key wordsCost-profit tradeoff      Credibility theory      Fuzzy simulation      Fuzzy programming      Genetic algorithm     
Received: 29 March 2014      Published: 05 December 2014
CLC:  TP271  
Cite this article:

Guangdong Tian, Hua Ke, Xiaowei Chen. Fuzzy cost-profit tradeoff model for locating a vehicle inspection station considering regional constraints. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1138-1146.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1400116     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I12/1138


考虑区域约束的车辆检测站选址模糊费用—利润均衡模型

汽车检测站是综合运用现代检测技术实现汽车运行状态检测及诊断的场所或服务机构。合理规划及管理汽车检测站是保障汽车安全运行的客观需要,也是方便用户需求、促进区域经济协调发展的必然要求。作为检测站规划的第一步,检测站选址涉及诸多约束,是一个复杂的决策问题。考虑到汽车检测站选址即网点布局的不确定性,为更切合地描述实际情况,引入检测车辆数量为模糊变量的汽车检测站模糊选址问题,以充分反映专家评估的偏见。另外,考虑到自然环境限制或政策限定等因素,构建了保证投资商获得一定利润、且检测用户总运输费用最低的均衡模型。建立反映选址实际情况的模糊费用—利润均衡模型,提出应用融合模糊模拟和遗传算法的混合智能算法进行求解分析。求解结果表明所提方法不仅很好地描述了专家评估的偏见,且和传统的确定性求解方法结果基本一致,说明所构建的模型有效。

关键词: 费用—利润均衡,  可信性理论,  模糊模拟,  模糊规划,  遗传算法 
[1] Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz. Neuro-heuristic computational intelligence for solving nonlinear pantograph systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 464-484.
[2] Gang Xiong, Yu-xiang Hu, Le Tian, Ju-long Lan, Jun-fei Li, Qiao Zhou. A virtual service placement approach based on improved quantum genetic algorithm[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 661-671.
[3] Ya-tao Zhang, Cheng-yu Liu, Shou-shui Wei, Chang-zhi Wei, Fei-fei Liu. ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(7): 564-573.
[4] Hamid Tabatabaee, Mohammad Reza Akbarzadeh-T, Naser Pariz. Dynamic task scheduling modeling in unstructured heterogeneous multiprocessor systems[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(6): 423-434.
[5] Da-yu Xu, Shan-lin Yang, Ren-ping Liu. A mixture of HMM, GA, and Elman network for load prediction in cloud-oriented data centers[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(11): 845-858.
[6] Ozoemena Anthony Ani, He Xu, Yi-ping Shen, Shao-gang Liu, Kai Xue. Modeling and multiobjective optimization of traction performance for autonomous wheeled mobile robot in rough terrain[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(1): 11-29.
[7] Ommolbanin Yousefi, Mirbahadorgholi Aryanezhad, Seyed Jafar Sadjadi, Arash Shahin. Developing a multi-objective, multi-item inventory model and three algorithms for its solution[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(8): 601-612.
[8] Hossein Ghaffarian, Mohsen Soryani, Mahmood Fathy. Planning VANET infrastructures to improve safety awareness in curved roads[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(12): 918-928.
[9] Xiao-hong Tan, Rui-min Shen, Yan Wang. Personalized course generation and evolution based on genetic algorithms[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(12): 909-917.
[10] Zheng-min Kong, Liang Zhong, Guang-xi Zhu, Li Ding. Differential multiuser detection using a novel genetic algorithm for ultra-wideband systems in lognormal fading channel[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(9): 754-765.
[11] Yuan-hong Shen, Xiao-hu Yang. A self-optimizing QoS-aware service composition approach in a context sensitive environment[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(3): 221-238.
[12] Lei Zhang, Mattias Lampe, Zhi Wang. A hybrid genetic algorithm to optimize device allocation in industrial Ethernet networks with real-time constraints[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(12): 965-975.
[13] Ellips Masehian, Davoud Sedighizadeh. Multi-objective robot motion planning using a particle swarm optimization model[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(8): 607-619.