Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2013, Vol. 14 Issue (7): 495-504    DOI: 10.1631/jzus.CIDE1303
    
A review of object representation based on local features
Jian Cao, Dian-hui Mao, Qiang Cai, Hai-sheng Li, Jun-ping Du
College of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China; School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
A review of object representation based on local features
Jian Cao, Dian-hui Mao, Qiang Cai, Hai-sheng Li, Jun-ping Du
College of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China; School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
 全文: PDF 
摘要: Object representation based on local features is a topical subject in the domain of image understanding and computer vision. We discuss the defects of global features in present methods and the advantages of local features in object recognition, and briefly explore state-of-the-art recognition methods using local features, especially the main approaches of local feature extraction and object representation. To clearly explain these methods, the problem of local feature extraction is divided into feature region detection, feature region description, and feature space optimization. The main components and merits of these steps are presented. Technologies for object presentation are classified into three types: vector space, sliding window, and structure relationship models. Future development trends are discussed briefly.
关键词: Object presentationLocal featureImage understandingObject recognitionVisual words    
Abstract: Object representation based on local features is a topical subject in the domain of image understanding and computer vision. We discuss the defects of global features in present methods and the advantages of local features in object recognition, and briefly explore state-of-the-art recognition methods using local features, especially the main approaches of local feature extraction and object representation. To clearly explain these methods, the problem of local feature extraction is divided into feature region detection, feature region description, and feature space optimization. The main components and merits of these steps are presented. Technologies for object presentation are classified into three types: vector space, sliding window, and structure relationship models. Future development trends are discussed briefly.
Key words: Object presentation    Local feature    Image understanding    Object recognition    Visual words
收稿日期: 2012-12-29 出版日期: 2013-07-05
CLC:  TP391.41  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Jian Cao
Dian-hui Mao
Qiang Cai
Hai-sheng Li
Jun-ping Du

引用本文:

Jian Cao, Dian-hui Mao, Qiang Cai, Hai-sheng Li, Jun-ping Du. A review of object representation based on local features. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 495-504.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.CIDE1303        http://www.zjujournals.com/xueshu/fitee/CN/Y2013/V14/I7/495

[1] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[2] M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. 图像水印框架的层级-方向分解分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.
[3] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. 基于高清监控图像的工程车辆检测算法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.
[4] Gui-jie Wang, Yun-long Cai, Min-jian Zhao, Jie Zhong. 无线传感器网络中基于最小化误符号率的联合功率分配和干扰消除算法研究[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 917-928.
[5] Xu-dong Jiang, Bin Sheng, Wei-yao Lin, Wei Lu, Li-zhuang Ma. 网络可视媒体处理中的图像反锯齿技术:回顾与展望[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 717-728.
[6] Zheng Liu, Wei-ming Wang, Xiu-ping Liu, Li-gang Liu. 尺度自动感知的几何体变形技术[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 764-775.
[7] Yong-zhao Zhan, Yan-ting Li, Xin-yu Wang, Yi Qian. 基于模型顶点曲率的三维网格盲水印算法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(5): 351-362.
[8] Xin Hao, Ye Shen, Shun-ren Xia. Automatic mass segmentation on mammograms combining random walks and active contour[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(9): 635-648.
[9] Chang-Il Son, Shun-ren Xia. Diffusion tensor interpolation profile control using non-uniform motion on a Riemannian geodesic[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(2): 90-98.
[10] Le-qing Zhu, Zhen Zhang. Insect recognition based on integrated region matching and dual tree complex wavelet transform[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(1): 44-53.
[11] Rui Wang, Wei-feng Chen, Ming-hao Pan, Hu-jun Bao. Harmonic coordinates for real-time image cloning[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(9): 690-698.
[12] Lei Zhang, Peng Liu, Yu-ling Liu, Fei-hong Yu. High quality multi-focus polychromatic composite image fusion algorithm based on filtering in frequency domain and synthesis in space domain[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(5): 365-374.
[13] Abbas Koochari, Mohsen Soryani. Exemplar-based video inpainting with large patches[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(4): 270-277.
[14] Hong ZHOU, Hai-er XU, Pei-qi HE, Zhi-bai SONG, Chen-ge GENG. Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(3): 199-205.
[15] Jun-jie CAO, Zhi-xun SU, Xiu-ping LIU, Hai-chuan BI. Measured boundary parameterization based on Poisson’s equation[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(3): 187-198.