Regular Paper |
|
|
|
|
基于可靠特征点分配算法的鲁棒性跟踪框架 |
Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan |
|
A robust object tracking framework based on a reliable point assignment algorithm |
Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan |
School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China; School of Electronic and Information Engineering, Guangzhou College of South China University of Technology, Guangzhou 510800, China; Information Network Engineering and Research Center, South China University of Technology, Guangzhou 510641, China |
1 |
Bay, H., Ess, A., Tuytelaars, T., et al., 2008. Speeded-up robust features (SURF). Comput. Vis. Image Understand., 110(3):346-359.
doi: 10.1016/j.cviu.2007.09.014
|
2 |
Brox, T., Bruhn, A., Papenberg, N., et al., 2004. High accuracy optical flow estimation based on a theory for warping. European Conf. on Computer Vision, p.25-36.
doi: 10.1007/978-3-540-24673-2_3
|
3 |
Cheng, C.W., Ou, W.L., Fan, C.P., 2016. Fast ellipse fitting based pupil tracking design for human-computer interaction applications. IEEE Int. Conf. on Consumer Electronics, p.445-446.
doi: 10.1109/ICCE.2016.7430685
|
4 |
Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.886-893.
doi: 10.1109/CVPR.2005.177
|
5 |
Elhamod, M., Levine, M.D., 2013. Automated real-time detection of potentially suspicious behavior in public transport areas. IEEE Trans. Intell. Transp. Syst., 14(2): 688-699.
doi: 10.1109/TITS.2012.2228640
|
6 |
Elmenreich, W., Koplin, M.A., 2011. Time-triggered object tracking subsystem for advanced driver assistance systems. Elektrotechn. Inform., 128(6):203-208.
doi: 10.1007/s00502-011-0004-x
|
7 |
Gonzalez, R.C., Woods, R.E., 2002. Digital Image Processing. Prentice Hall, Inc., New Jersey.
|
8 |
Harris, C., Stephens, M., 1988. A combined corner and edge detector. Proc. Alvey Vision Conf., p.147-151.
doi: 10.5244/C.2.23
|
9 |
Henriques, J.F., Caseiro, R., Martins, P., et al., 2015. High-speed tracking with kernelized correlation filters. IEEE Trans. Patt. Anal. Mach. Intell., 37(3):583-596.
doi: 10.1109/TPAMI.2014.2345390
|
10 |
Jeong, J.M., Yoon, T.S., Park, J.B., 2014. Kalman filter based multiple objects detection-tracking algorithm robust to occlusion. Proc. SICE Annual Conf., p.941-946.
doi: 10.1109/SICE.2014.6935235
|
11 |
Jia, C.X., Wang, Z.L., Wu, X., et al., 2015. A tracking-learning-detection (TLD) method with local binary pattern improved. IEEE Int. Conf. on Robotics and Biomimetics, p.1625-1630.
doi: 10.1109/ROBIO.2015.7419004
|
12 |
Jung, Y., Yoon, Y., 2015. Behavior tracking model in dynamic situation using the risk ratio EM. Int. Conf. on Information Networking, p.444-448.
doi: 10.1109/ICOIN.2015.7057942
|
13 |
Kalal, Z., Mikolajczyk, K., Matas, J., 2010a. Forward-backward error: automatic detection of tracking failures. 20th Int. Conf. on Pattern Recognition, p.23-26.
doi: 10.1109/ICPR.2010.675
|
14 |
Kalal, Z., Matas, J., Mikolajczyk, K., 2010b. P-N learning: bootstrapping binary classifiers by structural constraints. IEEE Conf. on Computer Vision and Pattern Recognition, 49-56.
doi: 10.1109/CVPR.2010.5540231
|
15 |
Kalal, Z., Mikolajczyk, K., Matas, J., 2012. Tracking-learning-detection. IEEE Trans. Patt. Anal. Mach. Intell., 34(7):1409-1422.
doi: 10.1109/TPAMI.2011.239
|
16 |
Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. J. Basic Eng., 82(1):35-45.
doi: 10.1115/1.3662552
|
17 |
Kaur, H., Sahambi, J.S., 2015. Vehicle tracking using fractional order Kalman filter for non-linear system. Int. Conf. on Computing, Communication and Automation, p.474-479.
doi: 10.1109/CCAA.2015.7148423
|
18 |
Kong, H., Akakin, H.C., Sarma, S.E., 2013. A generalized Laplacian of Gaussian filter for blob detection and its applications. IEEE Trans. Cybern., 43(6):1719-1733.
doi: 10.1109/TSMCB.2012.2228639
|
19 |
Li, Y., Zhu, J.K., Hoi, S.C.H., 2015. Reliable patch trackers: robust visual tracking by exploiting reliable patches. IEEE Conf. on Computer Vision and Pattern Recognition, p.353-361.
doi: 10.1109/CVPR.2015.7298632
|
20 |
Liu, S., Zhang, T.Z., Cao, X.C., et al., 2016. Structural correlation filter for robust visual tracking. IEEE Conf. on Computer Vision and Pattern Recognition, p.4312-4320.
doi: 10.1109/CVPR.2016.467
|
21 |
Liu, T., Wang, G., Yang, Q.X., 2015. Real-time part-based visual tracking via adaptive correlation filters. IEEE Conf. on Computer Vision and Pattern Recognition, p.4902-4912.
doi: 10.1109/CVPR.2015.7299124
|
22 |
Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
23 |
Ning, G.H., Zhang, Z., Huang, C., et al., 2016. Spatially supervised recurrent convolutional neural networks for visual object tracking. arXiv:1607.05781v1.
|
24 |
Prakash, U.M., Thamaraiselvi, V.G., 2014. Detecting and tracking of multiple moving objects for intelligent video surveillance systems. 2nd Int. Conf. on Current Trends in Engineering and Technology, p.253-257.
doi: 10.1109/ICCTET.2014.6966297
|
25 |
Redmon, J., Divvala, S., Girshick, R., et al., 2016. You only look once: unified, real-time object detection. IEEE Conf. on Computer Vision and Pattern Recognition, p.779-788.
doi: 10.1109/CVPR.2016.91
|
26 |
Sun, X., Yao, H.X., Zhang, S.P., 2010. A refined particle filter method for contour tracking. SPIE, 7744:77441M.
doi: 10.1117/12.863450
|
27 |
Tarkov, M.S., Dubynin, S.V., 2013. Real-time object tracking by CUDA-accelerated neural network. J. Comput. Sci. Appl., 1(1):1-4.
doi: 10.12691/jcsa-1-1-1
|
28 |
Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple features. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.511-518.
doi: 10.1109/CVPR.2001.990517
|
29 |
Xu, F., Gao, M., 2010. Human detection and tracking based on HOG and particle filter. 3rd Int. Congress on Image and Signal Processing, p.1503-1507.
doi: 10.1109/CISP.2010.5646273
|
30 |
Yu, H.M., Zeng, X., 2015. Visual tracking combined with ranking vector SVM. J. Zhejiang Univ. (Eng. Sci.), 49(6): 1015-1021 (in Chinese).
doi: 10.3785/j.issn.1008-973X.2015.06.003
|
31 |
Yu, W.S., Tian, X.H., Hou, Z.Q., et al., 2015. Multi-scale mean shift tracking. IET Comput. Vis., 9(1):110-123.
doi: 10.1049/iet-cvi.2014.0077
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|