Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2010, Vol. 11 Issue (3): 199-205    DOI: 10.1631/jzus.C0910144
    
Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm
Hong ZHOU, Hai-er XU*, Pei-qi HE, Zhi-bai SONG, Chen-ge GENG
Department of Instrument Science and Engineering, Zhejiang University, Hangzhou 310027, China
Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm
Hong ZHOU, Hai-er XU*, Pei-qi HE, Zhi-bai SONG, Chen-ge GENG
Department of Instrument Science and Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(185 KB)  
摘要: Light emitting diode (LED) indicators used on automobile meters are essential for safe driving and few errors can be tolerated. The current manual inspection approach can achieve only 95% accuracy rate in weeding out errors occurring in the production process. It is imperative to improve the accuracy of the inspection process to better achieve the goal of safe driving. This paper proposes an automatic inspection method for LED indicators for use on automobile meters. Firstly, red-green-blue (RGB) color images of LED indicators are acquired and converted into R, G, and B intensity images. A seeded region growing (SRG) algorithm, which selects seeds automatically based on Otsu’s method, is then used to extract the LED indicator regions. Finally, a region matching process based on the seed and three area parameters of each region is applied to inspect the LED indicators one by one to locate any errors. Experiments on standard automobile meters showed that the inspection accuracy rate of this method was up to 99.52% and the inspection speed was faster compared with the manual method. Thus, the new method shows good prospects for practical application.
关键词: Automatic inspectionLight emitting diode (LED) indicatorsAutomobile meterSeeded region growing (SRG)    
Abstract: Light emitting diode (LED) indicators used on automobile meters are essential for safe driving and few errors can be tolerated. The current manual inspection approach can achieve only 95% accuracy rate in weeding out errors occurring in the production process. It is imperative to improve the accuracy of the inspection process to better achieve the goal of safe driving. This paper proposes an automatic inspection method for LED indicators for use on automobile meters. Firstly, red-green-blue (RGB) color images of LED indicators are acquired and converted into R, G, and B intensity images. A seeded region growing (SRG) algorithm, which selects seeds automatically based on Otsu’s method, is then used to extract the LED indicator regions. Finally, a region matching process based on the seed and three area parameters of each region is applied to inspect the LED indicators one by one to locate any errors. Experiments on standard automobile meters showed that the inspection accuracy rate of this method was up to 99.52% and the inspection speed was faster compared with the manual method. Thus, the new method shows good prospects for practical application.
Key words: Automatic inspection    Light emitting diode (LED) indicators    Automobile meter    Seeded region growing (SRG)
收稿日期: 2009-03-12 出版日期: 2010-03-01
CLC:  TP2  
通讯作者: Hai-er XU     E-mail: haierxu0109@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Hong ZHOU
Hai-er XU
Pei-qi HE
Zhi-bai SONG
Chen-ge GENG

引用本文:

Hong ZHOU, Hai-er XU, Pei-qi HE, Zhi-bai SONG, Chen-ge GENG. Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm. Front. Inform. Technol. Electron. Eng., 2010, 11(3): 199-205.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C0910144        http://www.zjujournals.com/xueshu/fitee/CN/Y2010/V11/I3/199

[1] Yu-shi Zhu, Can-jun Yang, Shi-jun Wu, Qing Li, Xiao-le Xu. 适用于湖水监测的水下滑翔机的空间高效转向方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 485-497.
[2] Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou. 含参数初值整定和自适应鲁棒方法的3-RPS气动并联平台位姿控制[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 303-316.
[3] Guo-liang Tao, Ce Shang, De-yuan Meng, Chao-chao Zhou. 含参数初值整定和自适应鲁棒方法的3-RPS气动并联平台位姿控制[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 303-316.
[4] Tao Zhang, Qing Li, Chang-shui Zhang, Hua-wei Liang, Ping Li, Tian-miao Wang, Shuo Li, Yun-long Zhu, Cheng Wu. 智能无人自主系统发展趋势[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 68-85.
[5] Xiao-yu ZHANG. 一类非仿射离散非线性系统的直接自适应模糊滑模控制[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(12): 1331-1343.
[6] Yong-chun Xie, Huang Huang, Yong Hu, Guo-qi Zhang. 先进控制方法在航天器上的应用:进展、挑战和未来发展[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 841-861.
[7] Guo-jiang Shen, Yong-yao Yang. 一种城市主干道信号动态协调控制方法及其应用[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 907-918.
[8] Wei Yang, Can-jun Yang, Ting Xu. 基于人体髋关节转动中心分析的髋关节外骨骼仿生设计[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 792-802.
[9] Qiang Liu, Jia-chen Ma. 基于子空间的离散时滞系统辨识[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 566-575.
[10] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. 基于候选曲线的公路轨迹规划中的智能计算量分配[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[11] Kyong-il Kim, Hsin Guan, Bo Wang, Rui Guo, Fan Liang. 铰接车辆的主动转向控制策略研究[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 576-586.
[12] Jin-yi Liu, Jing-quan Tan, En-rong Mao, Zheng-he Song, Zhong-xiang Zhu. 基于比例控制的农业机械自动转向系统研究[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 458-464.
[13] Yang Zhou, De-wei Wu. 基于头朝向细胞和网格细胞的生物启发式路径整合模型[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 435-448.
[14] Xie Wang, Mei-qin Liu, Zhen Fan, Sen-lin Zhang. 目标跟踪中一种新的基于H滤波器的噪声统计特征估计方法[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 449-457.
[15] Feng-yu Zhou, Xian-feng Yuan, Yang Yang, Zhi-fei Jiang, Chen-lei Zhou. 一种室内移动机器人高精度视觉定位传感器及其工作原理[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 365-374.