Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2012, Vol. 13 Issue (2): 90-98    DOI: 10.1631/jzus.C1100098
    
Diffusion tensor interpolation profile control using non-uniform motion on a Riemannian geodesic
Chang-Il Son, Shun-ren Xia
MOE Key Laboratory of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Department of Electronics, Kim Chaek University of Technology, Pyongyang 104919, DPR of Korea
Diffusion tensor interpolation profile control using non-uniform motion on a Riemannian geodesic
Chang-Il Son, Shun-ren Xia
MOE Key Laboratory of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Department of Electronics, Kim Chaek University of Technology, Pyongyang 104919, DPR of Korea
 全文: PDF 
摘要: Tensor interpolation is a key step in the processing algorithms of diffusion tensor imaging (DTI), such as registration and tractography. The diffusion tensor (DT) in biological tissues is assumed to be positive definite. However, the tensor interpolations in most clinical applications have used a Euclidian scheme that does not take this assumption into account. Several Riemannian schemes were developed to overcome this limitation. Although each of the Riemannian schemes uses different metrics, they all result in a ‘fixed’ interpolation profile that cannot adapt to a variety of diffusion patterns in biological tissues. In this paper, we propose a DT interpolation scheme to control the interpolation profile, and explore its feasibility in clinical applications. The profile controllability comes from the non-uniform motion of interpolation on the Riemannian geodesic. The interpolation experiment with medical DTI data shows that the profile control improves the interpolation quality by assessing the reconstruction errors with the determinant error, Euclidean norm, and Riemannian norm.
关键词: Diffusion tensor (DT)DT imaging (DTI)DT interpolationInterpolation profile controlRiemannian geodesic    
Abstract: Tensor interpolation is a key step in the processing algorithms of diffusion tensor imaging (DTI), such as registration and tractography. The diffusion tensor (DT) in biological tissues is assumed to be positive definite. However, the tensor interpolations in most clinical applications have used a Euclidian scheme that does not take this assumption into account. Several Riemannian schemes were developed to overcome this limitation. Although each of the Riemannian schemes uses different metrics, they all result in a ‘fixed’ interpolation profile that cannot adapt to a variety of diffusion patterns in biological tissues. In this paper, we propose a DT interpolation scheme to control the interpolation profile, and explore its feasibility in clinical applications. The profile controllability comes from the non-uniform motion of interpolation on the Riemannian geodesic. The interpolation experiment with medical DTI data shows that the profile control improves the interpolation quality by assessing the reconstruction errors with the determinant error, Euclidean norm, and Riemannian norm.
Key words: Diffusion tensor (DT)    DT imaging (DTI)    DT interpolation    Interpolation profile control    Riemannian geodesic
收稿日期: 2011-04-17 出版日期: 2012-01-19
CLC:  TP391.41  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Chang-Il Son
Shun-ren Xia

引用本文:

Chang-Il Son, Shun-ren Xia. Diffusion tensor interpolation profile control using non-uniform motion on a Riemannian geodesic. Front. Inform. Technol. Electron. Eng., 2012, 13(2): 90-98.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1100098        http://www.zjujournals.com/xueshu/fitee/CN/Y2012/V13/I2/90

[1] Rong-Feng Zhang , Ting Deng , Gui-Hong Wang , Jing-Lun Shi , Quan-Sheng Guan . 基于可靠特征点分配算法的鲁棒性跟踪框架[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 545-558.
[2] M. F. Kazemi, M. A. Pourmina, A. H. Mazinan. 图像水印框架的层级-方向分解分析[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1199-1217.
[3] Xun Liu, Yin Zhang, San-yuan Zhang, Ying Wang, Zhong-yan Liang, Xiu-zi Ye. 基于高清监控图像的工程车辆检测算法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 346-357.
[4] Gui-jie Wang, Yun-long Cai, Min-jian Zhao, Jie Zhong. 无线传感器网络中基于最小化误符号率的联合功率分配和干扰消除算法研究[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(10): 917-928.
[5] Zheng Liu, Wei-ming Wang, Xiu-ping Liu, Li-gang Liu. 尺度自动感知的几何体变形技术[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 764-775.
[6] Xu-dong Jiang, Bin Sheng, Wei-yao Lin, Wei Lu, Li-zhuang Ma. 网络可视媒体处理中的图像反锯齿技术:回顾与展望[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 717-728.
[7] Yong-zhao Zhan, Yan-ting Li, Xin-yu Wang, Yi Qian. 基于模型顶点曲率的三维网格盲水印算法[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(5): 351-362.
[8] Jian Cao, Dian-hui Mao, Qiang Cai, Hai-sheng Li, Jun-ping Du. A review of object representation based on local features[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(7): 495-504.
[9] Xin Hao, Ye Shen, Shun-ren Xia. Automatic mass segmentation on mammograms combining random walks and active contour[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(9): 635-648.
[10] Le-qing Zhu, Zhen Zhang. Insect recognition based on integrated region matching and dual tree complex wavelet transform[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(1): 44-53.
[11] Rui Wang, Wei-feng Chen, Ming-hao Pan, Hu-jun Bao. Harmonic coordinates for real-time image cloning[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(9): 690-698.
[12] Lei Zhang, Peng Liu, Yu-ling Liu, Fei-hong Yu. High quality multi-focus polychromatic composite image fusion algorithm based on filtering in frequency domain and synthesis in space domain[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(5): 365-374.
[13] Abbas Koochari, Mohsen Soryani. Exemplar-based video inpainting with large patches[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(4): 270-277.
[14] Hong ZHOU, Hai-er XU, Pei-qi HE, Zhi-bai SONG, Chen-ge GENG. Automatic inspection of LED indicators on automobile meters based on a seeded region growing algorithm[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(3): 199-205.
[15] Jun-jie CAO, Zhi-xun SU, Xiu-ping LIU, Hai-chuan BI. Measured boundary parameterization based on Poisson’s equation[J]. Front. Inform. Technol. Electron. Eng., 2010, 11(3): 187-198.