Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2011, Vol. 12 Issue (10): 809-818    DOI: 10.1631/jzus.C1000425
    
k-Dimensional hashing scheme for hard disk integrity verification in computer forensics
Zoe Lin Jiang1,2, Jun-bin Fang*,2, Lucas Chi Kwong Hui2, Siu Ming Yiu2, Kam Pui Chow2, Meng-meng Sheng2
1 School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China 2 Department of Computer Science, The University of Hong Kong, Hong Kong, China
k-Dimensional hashing scheme for hard disk integrity verification in computer forensics
Zoe Lin Jiang1,2, Jun-bin Fang*,2, Lucas Chi Kwong Hui2, Siu Ming Yiu2, Kam Pui Chow2, Meng-meng Sheng2
1 School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China 2 Department of Computer Science, The University of Hong Kong, Hong Kong, China
 全文: PDF(444 KB)  
摘要: Verifying the integrity of a hard disk is an important concern in computer forensics, as the law enforcement party needs to confirm that the data inside the hard disk have not been modified during the investigation. A typical approach is to compute a single chained hash value of all sectors in a specific order. However, this technique loses the integrity of all other sectors even if only one of the sectors becomes a bad sector occasionally or is modified intentionally. In this paper we propose a k-dimensional hashing scheme, kD for short, to distribute sectors into a kD space, and to calculate multiple hash values for sectors in k dimensions as integrity evidence. Since the integrity of the sectors can be verified depending on any hash value calculated using the sectors, the probability to verify the integrity of unchanged sectors can be high even with bad/modified sectors in the hard disk. We show how to efficiently implement this kD hashing scheme such that the storage of hash values can be reduced while increasing the chance of an unaffected sector to be verified successfully. Experimental results of a 3D scheme show that both the time for computing the hash values and the storage for the hash values are reasonable.
关键词: Computer forensicsDigital evidenceHard disk integrityk-Dimensional hashing    
Abstract: Verifying the integrity of a hard disk is an important concern in computer forensics, as the law enforcement party needs to confirm that the data inside the hard disk have not been modified during the investigation. A typical approach is to compute a single chained hash value of all sectors in a specific order. However, this technique loses the integrity of all other sectors even if only one of the sectors becomes a bad sector occasionally or is modified intentionally. In this paper we propose a k-dimensional hashing scheme, kD for short, to distribute sectors into a kD space, and to calculate multiple hash values for sectors in k dimensions as integrity evidence. Since the integrity of the sectors can be verified depending on any hash value calculated using the sectors, the probability to verify the integrity of unchanged sectors can be high even with bad/modified sectors in the hard disk. We show how to efficiently implement this kD hashing scheme such that the storage of hash values can be reduced while increasing the chance of an unaffected sector to be verified successfully. Experimental results of a 3D scheme show that both the time for computing the hash values and the storage for the hash values are reasonable.
Key words: Computer forensics    Digital evidence    Hard disk integrity    k-Dimensional hashing
收稿日期: 2010-12-11 出版日期: 2011-10-08
CLC:  TP309  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Zoe Lin Jiang
Jun-bin Fang
Lucas Chi Kwong Hui
Siu Ming Yiu
Kam Pui Chow
Meng-meng Sheng

引用本文:

Zoe Lin Jiang, Jun-bin Fang, Lucas Chi Kwong Hui, Siu Ming Yiu, Kam Pui Chow, Meng-meng Sheng. k-Dimensional hashing scheme for hard disk integrity verification in computer forensics. Front. Inform. Technol. Electron. Eng., 2011, 12(10): 809-818.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/jzus.C1000425        http://www.zjujournals.com/xueshu/fitee/CN/Y2011/V12/I10/809

[1] Ehsan Saeedi, Yinan Kong, Md. Selim Hossain. 边信道攻击和学习向量量化[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 511-518.
[2] Yu-jun Xiao, Wen-yuan Xu, Zhen-hua Jia, Zhuo-ran Ma, Dong-lian Qi. 一种非侵入式的基于功耗的可编程逻辑控制器异常检测方案[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 519-534.
[3] Gaurav Bansod, Narayan Pisharoty, Abhijit Patil. BORON:面向普适计算的超轻量低功耗加密设计[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 332-345.
[4] Feng-he Wang, Chun-xiao Wang, Zhen-hua Liu. 标准模型下基于高效分级身份的格上加密方案[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 781-791.
[5] Jia Xie, Yu-pu Hu, Jun-tao Gao, Wen Gao. NTRU格上基于身份签名的高效方案[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 135-142.
[6] Kok-Seng Wong, Myung Ho Kim. 面向优选应答的k-匿名模型[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(9): 720-731.
[7] Kuo-Hui Yeh. 一套具备使用者不可追踪性的轻量化身分鉴别机制[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 259-271.
[8] Osama A. Khashan, Abdullah M. Zin, Elankovan A. Sundararajan. ImgFS:一种利用用户空间文件系统的图片存储透明加密技术[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(1): 28-42.
[9] Shuang Tan, Yan Jia. NaEPASC:一种新颖且高效的云数据公开审计机制[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 794-804.
[10] Osama A. Khashan, Abdullah M. Zin, Elankovan A. Sundararajan. 静态视觉图像全加密与选择加密性能比较研究[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(6): 435-444.
[11] Kuo-Hui Yeh, Kuo-Yu Tsai, Jia-Li Hou. Analysis and design of a smart card based authentication protocol[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(12): 909-917.
[12] Yong Cheng, Zhi-ying Wang, Jun Ma, Jiang-jiang Wu, Song-zhu Mei, Jiang-chun Ren. [J]. Frontiers of Information Technology & Electronic Engineering, 2013, 14(2): 85-97.
[13] Hong-yuan Chen, Yue-sheng Zhu. A robust watermarking algorithm based on QR factorization and DCT using quantization index modulation technique[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(8): 573-584.
[14] Baiying Lei, Ing Yann Soon. A multipurpose audio watermarking algorithm with synchronization and encryption[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(1): 11-19.
[15] Yang Yang, Yu-pu Hu, Le-you Zhang, Chun-hui Sun. CCA2 secure biometric identity based encryption with constant-size ciphertext[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(10): 819-827.