Please wait a minute...
Frontiers of Information Technology & Electronic Engineering  2017, Vol. 18 Issue (4): 511-518    DOI: 10.1631/FITEE.1500460
Regular Paper     
边信道攻击和学习向量量化
Ehsan Saeedi, Yinan Kong, Md. Selim Hossain
Side-channel attacks and learning-vector quantization
Ehsan Saeedi, Yinan Kong, Md. Selim Hossain
Department of Engineering, Macquarie University, Sydney, Australia
 全文: PDF 
摘要: 概要:尽管加密算法已得到改进,加密系统的安全性仍然是密码系统设计者关注的重点。边信道攻击可利用加密系统的物理漏洞来获取秘密信息。目前提出的多种边信道信息分析方法中,机器学习被认为是一种有前景的方法。基于神经网络的机器学习可获得指令标志(功耗与电磁辐射),并自动识别。本文对椭圆曲线加密(Elliptic curve cryptography, ECC)的现场可编程门阵列(field-programmable gate array, FPGA)实现展开了新的实验研究,探讨了基于学习向量量化(Learning vector quantization, LVQ)神经网络的边信道信息表征的效率。LVQ作为多类分类器的主要特点是它具有学习复杂非线性输入-输出关系、使用顺序训练程序和适应数据的能力。实验结果表明基于LVQ的多类分类是边信道数据表征的强大且有前景的方法。
关键词: 边信道攻击椭圆曲线加密多类分类学习向量量化    
Abstract: The security of cryptographic systems is a major concern for cryptosystem designers, even though cryptography algorithms have been improved. Side-channel attacks, by taking advantage of physical vulnerabilities of cryptosystems, aim to gain secret information. Several approaches have been proposed to analyze side-channel information, among which machine learning is known as a promising method. Machine learning in terms of neural networks learns the signature (power consumption and electromagnetic emission) of an instruction, and then recognizes it automatically. In this paper, a novel experimental investigation was conducted on field-programmable gate array (FPGA) implementation of elliptic curve cryptography (ECC), to explore the efficiency of side-channel information characterization based on a learning vector quantization (LVQ) neural network. The main characteristics of LVQ as a multi-class classifier are that it has the ability to learn complex non-linear input-output relationships, use sequential training procedures, and adapt to the data. Experimental results show the performance of multi-class classification based on LVQ as a powerful and promising approach of side-channel data characterization.
Key words: Side-channel attacks    Elliptic curve cryptography    Multi-class classification    Learning vector quantization
收稿日期: 2015-12-19 出版日期: 2017-04-12
CLC:  TP309  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Ehsan Saeedi
Yinan Kong
Md. Selim Hossain

引用本文:

Ehsan Saeedi, Yinan Kong, Md. Selim Hossain. Side-channel attacks and learning-vector quantization. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 511-518.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500460        http://www.zjujournals.com/xueshu/fitee/CN/Y2017/V18/I4/511

1 Bartkewitz, T., Lemke-Rust, K., 2013. Efficient template attacks based on probabilistic multi-class support vector machines. LNCS, 7771:263-276.
doi: 10.1007/978-3-642-37288-9_18
2 Blake, I.F., Seroussi, G., Smart, N., 1999. Elliptic Curves in Cryptography. Cambridge University Press.
doi: 10.1017/CBO9781107360211
3 Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Math. Contr. Signals Syst., 2(4):303-314.
doi: 10.1007/BF02551274
4 de Mulder, E., Buysschaert, P., Ors, S.B., et al., 2005. Electromagnetic analysis attack on an FPGA implementation of an elliptic curve cryptosystem. Int. Conf. on Computer as a Tool, p.1879-1882.
doi: 10.1109/EURCON.2005.1630348
5 Duda, R.O., Hart, P.E., Stork, D.G., 2011. Pattern Classification. John Wiley & Sons.
6 Flotzinger, D., Kalcher, J., Pfurtscheller, G., 1992. EEG classification by learning vector quantization. Biomed. Eng., 37(12):303-309 (in German).
doi: 10.1515/bmte.1992.37.12.303
7 Gersho, A., 1979. Asymptotically optimal block quantization. IEEE Trans. Inform. Theory, 25(4):373-380.
doi: 10.1109/TIT.1979.1056067
8 Haykin, S.S., 2009. Neural Networks and Learning Machines. Pearson Education, Upper Saddle River.
9 Heuser, A., Zohner, M., 2012. Intelligent machine homicide. Int. Workshop on Constructive Side-Channel Analysis and Secure Design, p.249-264.
doi: 10.1007/978-3-642-29912-4_18
10 Heyszl, J., Mangard, S., Heinz, B., et al., 2012a. Localized electromagnetic analysis of cryptographic implementations. Cryptographers’ Track at the RSA Conf., p.231-244.
doi: 10.1007/978-3-642-27954-6_15
11 Heyszl, J., Merli, D., Heinz, B., et al., 2012b. Strengths and limitations of high-resolution electromagnetic field measurements for side-channel analysis. Int. Conf. on Smart Card Research and Advanced Applications, p.248-262.
doi: 10.1007/978-3-642-37288-9_17
12 Itoh, K., Izu, T., Takenaka, M., 2002. Address-bit differential power analysis of cryptographic schemes OK-ECDH and OK-ECDSA. LNCS, 2523:129-143.
doi: 10.1007/3-540-36400-5_11
13 Koblitz, N., 1987. Elliptic curve cryptosystems. Math. Comput., 48(177):203-209.
doi: 10.1090/S0025-5718-1987-0866109-5
14 Kocher, P., Jaffe, J., Jun, B., 1999. Differential power analysis. Annual Int. Cryptology Conf., p.388-397.
doi: 10.1007/3-540-48405-1_25
15 Kohonen, T., 1988. An introduction to neural computing. Neur. Networks, 1(1):3-16.
doi: 10.1016/0893-6080(88)90020-2
16 Kohonen, T., 1990a. Improved versions of learning vector quantization. Int. Joint Conf. on Neural Networks, p.545-550.
doi: 10.1109/IJCNN.1990.137622
17 Kohonen, T., 1990b. Statistical pattern recognition revisited. In: Eckmiller, R. (Ed.), Advanced Neural Computers. North-Holland, Amsterdam, p.137-144.
doi: 10.1016/B978-0-444-88400-8.50020-0
18 Kopf, B., Durmuth, M., 2009. A provably secure and efficient countermeasure against timing attacks. 22nd IEEE Computer Security Foundations Symp., p.324-335.
doi: 10.1109/CSF.2009.21
19 Li, C., Lee, C., 2011. A robust remote user authentication scheme using smart card. Inform. Technol. Contr., 40(3):236-245.
doi: 10.5755/j01.itc.40.3.632
20 Ma, C., Wang, D., Zhang, Q., 2012. Cryptanalysis and improvement of Sood et al.’s dynamic ID-based authentication scheme. Int. Conf. on Distributed Computing and Internet Technology, p.141-152.
doi: 10.1007/978-3-642-28073-3_13
21 Ma, C., Wang, D., Zhao, S., 2014. Security flaws in two improved remote user authentication schemes using smart cards. Int. J. Commun. Syst., 27(10):2215-2227.
doi: 10.1002/dac.2468
22 Mangard, S., Oswald, E., Popp, T., 2007. Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer Science & Business Media.
doi: 10.1007/978-0-387-38162-6
23 Mäntysalo, J., Torkkolay, K., Kohonen, T., 1992. LVQ-based speech recognition with high-dimensional context vectors. Int. Conf. on Spoken Language Processing, p.539-542.
24 Miller, V.S., 1986. Use of elliptic curves in cryptography. Conf. on the Theory and Application of Cryptographic Techniques, p.417-426.
doi: 10.1007/3-540-39799-X_31
25 Msgna, M., Markantonakis, K., Mayes, K., 2014. Precise instruction-level side channel profiling of embedded processors. Int. Conf. on Information Security Practice and Experience, p.129-143.
doi: 10.1007/978-3-319-06320-1_11
26 Orlando, J., Mann, R., Haykin, S., 1990. Radar Classification of Sea-Ice Using Traditional and Neural Classifiers. Proc. Int. Joint Conf. on Neural Networks, II-263.
27 Pregenzer, M., Pfurtscheller, G., Flotzinger, D., 1996. Automated feature selection with a distinction sensitive learning vector quantizer. Neurocomputing, 11(1):19-29.
doi: 10.1016/0925-2312(94)00071-9
28 Prouff, E., 2014. Constructive Side-Channel Analysis and Secure Design. Springer Berlin Heidelberg.
doi: 10.1007/978-3-319-10175-0
29 Saeedi, E., Kong, Y., 2014. Side channel information analysis based on machine learning. 8th Int. Conf. on Signal Processing and Communication Systems, p.1-7.
doi: 10.1109/ICSPCS.2014.7021075
30 Saeedi, E., Hossain, M.S., Kong, Y., 2015. Multi-class SVMs analysis of side-channel information of elliptic curve cryptosystem. Int. Symp. on Performance Evaluation of Computer and Telecommunication Systems, p.1-6.
doi: 10.1109/SPECTS.2015.7285297
31 Tillich, S., Herbst, C., 2008. Attacking state-of-the-art software countermeasures: a case study for AES. Int. Workshop on Cryptographic Hardware and Embedded Systems, p.228-243.
doi: 10.1007/978-3-540-85053-3_15
32 Wang, D., Wang, P., 2015. Offline dictionary attack on password authentication schemes using smart cards. LNCS, 7807:221-237.
doi: 10.1007/978-3-319-27659-5_16
33 Wang, D., Ma, C., Zhang, Q., et al., 2013. Secure password-based remote user authentication scheme against smart card security breach. J. Networks, 8(1):148-155.
34 Wang, D., He, D., Wang, P., et al., 2015a. Anonymous two-factor authentication in distributed systems: certain goals are beyond attainment. IEEE Trans. Depend. Sec. Comput., 12(4):428-442.
doi: 10.1109/TDSC.2014.2355850
35 Wang, D., Wang, N., Wang, P., et al., 2015b. Preserving privacy for free: efficient and provably secure two-factor authentication scheme with user anonymity. Inform. Sci., 321:162-178.
doi: 10.1016/j.ins.2015.03.070
36 Yeh, K., 2015. A lightweight authentication scheme with user untraceability. Front. Inform. Technol. Electron. Eng., 16(4):259-271.
doi: 10.1631/FITEE.1400232
[1] Yu-jun Xiao, Wen-yuan Xu, Zhen-hua Jia, Zhuo-ran Ma, Dong-lian Qi. 一种非侵入式的基于功耗的可编程逻辑控制器异常检测方案[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 519-534.
[2] Gaurav Bansod, Narayan Pisharoty, Abhijit Patil. BORON:面向普适计算的超轻量低功耗加密设计[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 332-345.
[3] Feng-he Wang, Chun-xiao Wang, Zhen-hua Liu. 标准模型下基于高效分级身份的格上加密方案[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 781-791.
[4] Jia Xie, Yu-pu Hu, Jun-tao Gao, Wen Gao. NTRU格上基于身份签名的高效方案[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 135-142.
[5] Kok-Seng Wong, Myung Ho Kim. 面向优选应答的k-匿名模型[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(9): 720-731.
[6] Kuo-Hui Yeh. 一套具备使用者不可追踪性的轻量化身分鉴别机制[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 259-271.
[7] Osama A. Khashan, Abdullah M. Zin, Elankovan A. Sundararajan. ImgFS:一种利用用户空间文件系统的图片存储透明加密技术[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(1): 28-42.
[8] Shuang Tan, Yan Jia. NaEPASC:一种新颖且高效的云数据公开审计机制[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(9): 794-804.
[9] Osama A. Khashan, Abdullah M. Zin, Elankovan A. Sundararajan. 静态视觉图像全加密与选择加密性能比较研究[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(6): 435-444.
[10] Kuo-Hui Yeh, Kuo-Yu Tsai, Jia-Li Hou. Analysis and design of a smart card based authentication protocol[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(12): 909-917.
[11] Yong Cheng, Zhi-ying Wang, Jun Ma, Jiang-jiang Wu, Song-zhu Mei, Jiang-chun Ren. [J]. Frontiers of Information Technology & Electronic Engineering, 2013, 14(2): 85-97.
[12] Hong-yuan Chen, Yue-sheng Zhu. A robust watermarking algorithm based on QR factorization and DCT using quantization index modulation technique[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(8): 573-584.
[13] Baiying Lei, Ing Yann Soon. A multipurpose audio watermarking algorithm with synchronization and encryption[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(1): 11-19.
[14] Zoe Lin Jiang, Jun-bin Fang, Lucas Chi Kwong Hui, Siu Ming Yiu, Kam Pui Chow, Meng-meng Sheng. k-Dimensional hashing scheme for hard disk integrity verification in computer forensics[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(10): 809-818.
[15] Yang Yang, Yu-pu Hu, Le-you Zhang, Chun-hui Sun. CCA2 secure biometric identity based encryption with constant-size ciphertext[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(10): 819-827.