Please wait a minute...
Frontiers of Information Technology & Electronic Engineering  2017, Vol. 18 Issue (4): 519-534    DOI: 10.1631/FITEE.1601540
Regular Paper     
一种非侵入式的基于功耗的可编程逻辑控制器异常检测方案
Yu-jun Xiao, Wen-yuan Xu, Zhen-hua Jia, Zhuo-ran Ma, Dong-lian Qi
NIPAD: a non-invasive power-based anomaly detection scheme for programmable logic controllers
Yu-jun Xiao, Wen-yuan Xu, Zhen-hua Jia, Zhuo-ran Ma, Dong-lian Qi
School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; Wireless Information Network Laboratory, Rutgers University, North Brunswick, NJ 08902, USA
 全文: PDF 
摘要: 概要:工业控制系统广泛应用于关键基础设施的建设中,关系到国计民生,因此,攻击者越来越多地将其作为攻击目标,并造成严重的破坏。可编程逻辑控制器(Programmable logic controller, PLC)作为工业控制系统中的核心组件,能够直接控制现场设备,一旦PLC中运行了恶意程序,则可能直接造成重大财产损失甚至是人员伤亡。近些年来,针对PLC的攻击事件显著增加,这表明PLC存在很大的脆弱性,同时也提醒人们保护PLC安全的重要性。不幸的是,传统的入侵检测系统和杀毒软件并不能很好地保护PLC的安全,因此,针对PLC的有效的安全防护方案有待被研究。基于上述背景,本文提出了一种非侵入式的基于功耗的PLC异常检测方案。该方案通过分析PLC运行时的功耗变化来检测PLC中是否运行异常程序,分为功耗信息获取与功耗分析两部分。采集功耗信息是通过在PLC的供电线上串入一个电阻实现的,当PLC运行时,测量电阻两端的电压即可获取CPU的功耗信息。为了更好的分析功耗信息,本文首先从原始功耗数据中提取有效的特征值组合,然后利用正常样本来训练一个基于长短记忆(long short-term memory, LSTM)单元的神经网络模型,利用该模型对后续正常样本进行预测,通过比较测量到的功耗信息与预测的功耗信息,可以确定当前PLC中运行的程序是否为正常程序。该方案的优点是无需对原工控系统的封装部分进行软硬件的修改,且无需负样本即可实现对未知攻击的检测。我们在实验室测试平台上对该方法进行了评估,实验表明,对于原程序,只需改动0.63%即可达到99.83%的准确率。
关键词: 工业控制系统可编程逻辑控制器边信道异常检测基于长短记忆单元的神经网络模型    
Abstract: Industrial control systems (ICSs) are widely used in critical infrastructures, making them popular targets for attacks to cause catastrophic physical damage. As one of the most critical components in ICSs, the programmable logic controller (PLC) controls the actuators directly. A PLC executing a malicious program can cause significant property loss or even casualties. The number of attacks targeted at PLCs has increased noticeably over the last few years, exposing the vulnerability of the PLC and the importance of PLC protection. Unfortunately, PLCs cannot be protected by traditional intrusion detection systems or antivirus software. Thus, an effective method for PLC protection is yet to be designed. Motivated by these concerns, we propose a non-invasive power-based anomaly detection scheme for PLCs. The basic idea is to detect malicious software execution in a PLC through analyzing its power consumption, which is measured by inserting a shunt resistor in series with the CPU in a PLC while it is executing instructions. To analyze the power measurements, we extract a discriminative feature set from the power trace, and then train a long short-term memory (LSTM) neural network with the features of normal samples to predict the next time step of a normal sample. Finally, an abnormal sample is identified through comparing the predicted sample and the actual sample. The advantages of our method are that it requires no software modification on the original system and is able to detect unknown attacks effectively. The method is evaluated on a lab testbed, and for a trojan attack whose difference from the normal program is around 0.63%, the detection accuracy reaches 99.83%.
Key words: Industrial control system    Programmable logic controller    Side-channel    Anomaly detection    Long short-term memory neural networks
收稿日期: 2016-09-09 出版日期: 2017-04-12
CLC:  TP309.1  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Yu-jun Xiao
Wen-yuan Xu
Zhen-hua Jia
Zhuo-ran Ma
Dong-lian Qi

引用本文:

Yu-jun Xiao, Wen-yuan Xu, Zhen-hua Jia, Zhuo-ran Ma, Dong-lian Qi. NIPAD: a non-invasive power-based anomaly detection scheme for programmable logic controllers. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 519-534.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1601540        http://www.zjujournals.com/xueshu/fitee/CN/Y2017/V18/I4/519

1 Alcaraz, C., Zeadally, S., 2013. Critical control system protection in the 21st century. Computer, 46(10):74-83.
doi: 10.1109/MC.2013.69
2 Alcaraz, C., Zeadally, S., 2015. Critical infrastructure protection: requirements and challenges for the 21st century. Int. J. Crit. Infrastr. Protect., 8:53-66.
doi: 10.1016/j.ijcip.2014.12.002
3 Bencsáth, B., Pék, G., Buttyán, L., et al., 2012. The cousins of Stuxnet: Duqu, Flame, and Gauss. Fut. Int., 4(4):971-1003.
doi: 10.3390/fi4040971
4 Bolton, W., 2015. Programmable Logic Controllers (6th Ed.). Newnes, USA.
5 Bullock, J., Conservatoire, U.C.E.B., 2007. LibXtract: a lightweight library for audio feature extraction. Proc. Int. Computer Music Conf., p.1-4.
6 Candes, E.J., Tao, T., 2006. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406-5425.
doi: 10.1109/TIT.2006.885507
7 Cárdenas, A.A., Amin, S., Sastry, S., 2008. Research challenges for the security of control systems. Proc. 3rd Conf. on Hot Topics in Security, Article 6.
8 Chen, T.M., Abu-Nimeh, S., 2011. Lessons from Stuxnet. Computer, 44(4):91-93.
doi: 10.1109/MC.2011.115
9 Clark, S.S., Ransford, B., Rahmati, A., et al., 2013. WattsUpDoc: power side channels to nonintrusively discover untargeted malware on embedded medical devices. Proc. USENIX Workshop on Health Information Technologies, p.1-11.
10 Coletta, A., Armando, A., 2015. Security monitoring for industrial control systems. Proc. Conf. on Cybersecurity of Industrial Control Systems, p.48-62.
doi: 10.1007/978-3-319-40385-4_4
11 Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.886-893.
doi: 10.1109/CVPR.2005.177
12 Formby, D., Srinivasan, P., Leonard, A., et al., 2016. Who’s in control of your control system? Device fingerprinting for cyber-physical systems. Proc. Network and Distributed System Security Symp., p.1-13.
13 García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G., emph{et al.}, 2009. Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur., 28(1-2):18-28.
doi: 10.1016/j.cose.2008.08.003
14 Gers, F.A., Schmidhuber, J.A., Cummins, F., 2000. Learning to forget: continual prediction with LSTM. Neur. Comput., 12(10):2451-2471.
doi: 10.1162/089976600300015015
15 Gonzalez, C.A., Hinton, A., 2014. Detecting malicious software execution in programmable logic controllers using power fingerprinting. Proc. Int. Conf. on Critical Infrastructure Protection, p.15-27.
doi: 10.1007/978-3-662-45355-1_2
16 Johnson, R.E., 2010. Survey of SCADA security challenges and potential attack vectors. Proc. Int. Conf. for Internet Technology and Secured Transactions, p.1-5.
17 Kesler, B., 2011. The vulnerability of nuclear facilities to cyber attack. Strat. Insights, 10(1):15-25.
18 Krotofil, M., Gollmann, D., 2013. Industrial control systems security: what is happening? Proc. 11th IEEE Int. Conf. on Industrial Informatics, p.670-675.
doi: 10.1109/INDIN.2013.6622964
19 Langner, R., 2011. Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3):49-51.
doi: 10.1109/MSP.2011.67
20 Lee, H., Battle, A., Raina, R., et al., 2006. Efficient sparse coding algorithms. Proc. 19th Int. Conf. on Neural Information Processing Systems, p.801-808.
21 Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94
22 Macaulay, T., Singer, B.L., 2011. Cybersecurity for Industrial Control Systems: SCADA, DCS, PLC, HMI, and SIS. CRC Press, USA.
23 Malhotra, P., Vig, L., Shroff, G., et al., 2015. Long short term memory networks for anomaly detection in time series. Proc. European Symp. on Artificial Neural Networks, Computational Intelligence and Maching Learning, p.89-94.
24 Manevitz, L.M., Yousef, M., 2002. One-class SVMs for document classification. J. Mach. Learn. Res., 2:139-154.
25 Mantere, M., Uusitalo, I., Sailio, M., et al., 2012. Challenges of machine learning based monitoring for industrial control system networks. Proc. 26th Int. Conf. on Advanced Information Networking and Applications Workshops, p.968-972.
doi: 10.1109/WAINA.2012.135
26 Morris, T., Vaughn, R., Dandass, Y., 2012. A retrofit network intrusion detection system for MODBUS RTU and ASCII industrial control systems. Proc. 45th Hawaii Int. Conf. on System Science, p.2338-2345.
doi: 10.1109/HICSS.2012.78
27 Nandakumar, K., Jain, A.K., 2004. Local correlation-based fingerprint matching. Proc. ICVGIP, p.503-508.
28 Ni, B., Moulin, P., Yang, X., et al., 2015. Motion part regularization: improving action recognition via trajectory group selection. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.3698-3706.
doi: 10.1109/CVPR.2015.7298993
29 Pearson, K., 1901. Mathematical contributions to the theory of evolution. X. Supplement to a memoir on skew variation. Phil. Trans. R. Soc. A, 197:443-459.
30 Peng, Y., Xiang, C., Gao, H., et al., 2015. Industrial control system fingerprinting and anomaly detection. Proc. Int. Conf. on Critical Infrastructure Protection, p.73-85.
doi: 10.1007/978-3-319-26567-4_5
31 Piggin, R., 2015. Are industrial control systems ready for the cloud? Int. J. Crit. Infrastr. Protect., 9(C):38-40.
doi: 10.1016/j.ijcip.2014.12.005
32 Ponomarev, S., Atkison, T., 2016. Industrial control system network intrusion detection by telemetry analysis. IEEE Trans. Depend. Sec. Comput., 13(2):252-260.
doi: 10.1109/TDSC.2015.2443793
33 Pretorius, B., van Niekerk, B., 2016. Cyber-security for ICS/SCADA: a South African perspective. Int. J. Cyber Warf. Terror., 6(3):1-16.
doi: 10.4018/IJCWT.2016070101
34 Shang, W., Zeng, P., Wan, M., et al., 2016. Intrusion detection algorithm based on OCSVM in industrial control system. Secur. Commun. Netw., 9(10):1040-1049.
doi: 10.1002/sec.1398
35 Slay, J., Miller, M., 2007. Lessons learned from the Maroochy water breach. Proc. Int. Conf. on Critical Infrastructure Protection, p.73-82.
doi: 10.1007/978-0-387-75462-8_6
36 Stone, S.J., Temple, M.A., Baldwin, R.O., 2015. Detecting anomalous programmable logic controller behavior using RF-based Hilbert transform features and a correlation-based verification process. Int. J. Crit. Infrastr. Protect., 9(C):41-51.
doi: 10.1016/j.ijcip.2015.02.001
37 Stouffer, K.A., Falco, J.A., Scarfone, K.A., 2011. Guide to Industrial Control Systems (ICS) Security: Supervisory Control and Data Acquisition (SCADA) Systems, Distributed Control Systems (DCS), and Other Control System Configurations such as Programmable Logic Controllers (PLC). Technical Report SP 800-82, National Institute of Standards and Technology, USA.
38 Wang, H., Kläser, A., Schmid, C., et al., 2013. Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis., 103(1):60-79.
doi: 10.1007/s11263-012-0594-8
39 Xu, J., Yang, G., Man, H., et al., 2013. L1 graph based on sparse coding for feature selection. Proc. Int. Symp. on Neural Networks, p.594-601.
doi: 10.1007/978-3-642-39065-4_71
[1] Ehsan Saeedi, Yinan Kong, Md. Selim Hossain. 边信道攻击和学习向量量化[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 511-518.
[2] Ahmad Karim, Rosli Bin Salleh, Muhammad Shiraz, Syed Adeel Ali Shah, Irfan Awan, Nor Badrul Anuar. 僵尸网络探测技术:回顾、发展趋势及存在的问题[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(11): 943-983.