Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (2): 166-172    DOI: 10.1631/FITEE.1400183
    
自主轮式移动机器人路径追踪的纵向与侧向滑动控制
Hamza Khan, Jamshed Iqbal, Khelifa Baizid, Teresa Zielinska
Division of Theory of Machines and Robots, Warsaw University of Technology, Warsaw 00-661, Poland; Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova 16163, Italy; Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan; Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino 03043, Italy
Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking
Hamza Khan, Jamshed Iqbal, Khelifa Baizid, Teresa Zielinska
Division of Theory of Machines and Robots, Warsaw University of Technology, Warsaw 00-661, Poland; Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova 16163, Italy; Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan; Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino 03043, Italy
 全文: PDF 
摘要: 目的:轮式机器人广泛应用于自主移动机器人研究。已有文献大多数将机器人抽象成具备非完整约束的机械模型,这一假设条件仅在机器人低速运动时成立。本文考虑四轮机器人,同时考虑其纵向和侧向滑动控制,与实际情况更贴近。
创新:针对轮式移动机器人模型,同时考虑纵向和侧向滑动分量。
方法:设计纵向滑行控制策略(图1)。改变自然频率(图4)、阻尼和质量(图5)、轮子半径(图6)分别测试控制器响应,最终获取最优控制参数(表2)。
结论:仿真结果验证所提控制策略的有效性。通过测试选择合适参数使控制器实现快速平滑响应。所设计的控制器对轮子滑动扰动不作限制性假设,即可实现误差指数收敛。
关键词: 机器人建模机器人巡航滑动及防滑控制轮式移动机器人    
Abstract: This research formulates a path-following control problem subjected to wheel slippage and skid and solves it using a logic-based control scheme for a wheeled mobile robot (WMR). The novelty of the proposed scheme lies in its methodology that considers both longitudinal and lateral slip components. Based on the derived slip model, the controller for longitudinal motion slip has been synthesized. Various control parameters have been studied to investigate their effects on the performance of the controller resulting in selection of their optimum values. The designed controller for lateral slip or skid is based on the proposed side friction model and skid check condition. Considering a car-like WMR, simulation results demonstrate the effectiveness of the proposed control scheme. The robot successfully followed the desired circular trajectory in the presence of wheel slippage and skid. This research finds its potential in various applications involving WMR navigation and control.
Key words: Robot modeling    Robot navigation    Slip and skid control    Wheeled mobile robots
收稿日期: 2014-05-16 出版日期: 2015-01-29
CLC:  TP24  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Hamza Khan
Jamshed Iqbal
Khelifa Baizid
Teresa Zielinska

引用本文:

Hamza Khan, Jamshed Iqbal, Khelifa Baizid, Teresa Zielinska. Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking. Front. Inform. Technol. Electron. Eng., 2015, 16(2): 166-172.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1400183        http://www.zjujournals.com/xueshu/fitee/CN/Y2015/V16/I2/166

[1] Yu-shi Zhu, Can-jun Yang, Shi-jun Wu, Qing Li, Xiao-le Xu. 适用于湖水监测的水下滑翔机的空间高效转向方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 485-497.
[2] Wei Yang, Can-jun Yang, Ting Xu. 基于人体髋关节转动中心分析的髋关节外骨骼仿生设计[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 792-802.
[3] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. 基于候选曲线的公路轨迹规划中的智能计算量分配[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[4] Qiang Liu, Jia-chen Ma. 基于子空间的离散时滞系统辨识[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 566-575.
[5] Yang Zhou, De-wei Wu. 基于头朝向细胞和网格细胞的生物启发式路径整合模型[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(5): 435-448.
[6] Feng-yu Zhou, Xian-feng Yuan, Yang Yang, Zhi-fei Jiang, Chen-lei Zhou. 一种室内移动机器人高精度视觉定位传感器及其工作原理[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 365-374.
[7] Zi-wu Ren, Zhen-hua Wang, Li-ning Sun. 基于混合生物地理学优化的8自由度冗余臂逆运动学求解[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 607-616.
[8] Chao Li, Rong Xiong, Qiu-guo Zhu, Jun Wu, Ya-liang Wang, Yi-ming Huang. 基于髋策略的欠驱动双足机器人站立抗扰动恢复控制[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 579-593.
[9] Qian-shan Li, Rong Xiong, Shoudong Huang, Yi-ming Huang. 一种利用半稠密点云及RGB图像构建稠密表面模型地图的方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 594-606.
[10] Yang Yi, Zhi-yun Lin. 稳定与灵活:基于欠驱动机器人在未知变化环境的奔跑运动控制[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 283-292.
[11] Hüseyin Oktay Erkol, Hüseyin Demirel. 多自由度系统运动学方程求解的VHDL应用[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1164-1173.
[12] Qian Bi, Can-jun Yang. 人机交互力控制:针对食指外骨骼控制的模型参考自适应阻抗控制策略[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(4): 275-283.
[13] Shuang-shuang Fan, Can-jun Yang, Shi-lin Peng, Kai-hu Li, Yu Xie, Shao-yong Zhang. Underwater glider design based on dynamic model analysis and prototype developmentv[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(8): 583-599.
[14] Xin Ma, Ya Xu, Guo-qiang Sun, Li-xia Deng, Yi-bin Li. State-chain sequential feedback reinforcement learning for path planning of autonomous mobile robots[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 167-178.
[15] Ozoemena Anthony Ani, He Xu, Yi-ping Shen, Shao-gang Liu, Kai Xue. Modeling and multiobjective optimization of traction performance for autonomous wheeled mobile robot in rough terrain[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(1): 11-29.