Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (4): 283-292    DOI: 10.1631/FITEE.1400284
    
稳定与灵活:基于欠驱动机器人在未知变化环境的奔跑运动控制
Yang Yi, Zhi-yun Lin
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Stability and agility: biped running over varied and unknown terrain
Yang Yi, Zhi-yun Lin
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要: 目的:针对欠驱动机器人稳定与灵活性差的难点,设计一类欠驱动控制策略实现其在未知连续坡度变换地面环境下持续奔跑运动,增强机器人对未知复杂环境的适应能力。
创新点:(1)以奔跑持续性准则代替稳定性判据,为灵活非周期奔跑运动提供理论依据。(2)以落脚速度控制代替落脚位置控制策略,提高机器人对未知变化环境适应能力。
方法:(1)基于奔跑持续性准则设计落脚点控制策略,以落脚速度为恒速碰撞地面使得机器人每个奔跑步态着地时刻均在奔跑可行集内。(2)在每个奔跑步态设计非周期运动轨迹使得支撑阶段质心运动轨迹和腾空阶段落脚点位置始终满足落在奔跑可行集内,保证机器人在变化环境持续奔跑而不摔倒。
结论:提出奔跑持续性准则和落脚点速度控制,设计非周期运动轨迹始终满足落在奔跑可行集内,使得一类点足欠驱动机器人能够稳定灵活调节奔跑步态以适应未知连续的变化环境,极大增强了机器人复杂环境适应能力。仿真结果验证所提控制策略有效性(图4-8)。
关键词: 欠驱动奔跑机器人动态平衡未知变化环境    
Abstract: We tackle the problem of a biped running over varied and unknown terrain. Running is a necessary skill for a biped moving fast, but it increases the challenge of dynamic balance, especially when a biped is running on varied terrain without terrain information (due to the difficulty and cost of obtaining the terrain information in a timely manner). To address this issue, a new dynamic indicator called the sustainable running criterion is developed. The main idea is to sustain a running motion without falling by maintaining the system states within a running-feasible set, instead of running on a periodic limit cycle gait in the traditional way. To meet the precondition of the criterion, the angular moment about the center of gravity (COG) is restrained close to zero at the end of the stance phase. Then to ensure a small state jump at touchdown on the unknown terrain, the velocity of the swing foot is restrained within a specific range at the end of the flight phase. Finally, the position and velocity of the COG are driven into the running-feasible set. A five-link biped with underactuated point foot is considered in simulations. It is able to run over upward and downward terrain with a height difference of 0.15~m, which shows the effectiveness of our control scheme.
Key words: Underactuated running biped    Dynamic balance    Varied and unknown terrain
收稿日期: 2014-08-06 出版日期: 2015-04-03
CLC:  TP242  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Yang Yi
Zhi-yun Lin

引用本文:

Yang Yi, Zhi-yun Lin. Stability and agility: biped running over varied and unknown terrain. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 283-292.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1400284        http://www.zjujournals.com/xueshu/fitee/CN/Y2015/V16/I4/283

[1] Yu-shi Zhu, Can-jun Yang, Shi-jun Wu, Qing Li, Xiao-le Xu. 适用于湖水监测的水下滑翔机的空间高效转向方法[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 485-497.
[2] Wei Yang, Can-jun Yang, Ting Xu. 基于人体髋关节转动中心分析的髋关节外骨骼仿生设计[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 792-802.
[3] Qiang Liu, Jia-chen Ma. 基于子空间的离散时滞系统辨识[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 566-575.
[4] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. 基于候选曲线的公路轨迹规划中的智能计算量分配[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[5] Feng-yu Zhou, Xian-feng Yuan, Yang Yang, Zhi-fei Jiang, Chen-lei Zhou. 一种室内移动机器人高精度视觉定位传感器及其工作原理[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 365-374.
[6] Qian-shan Li, Rong Xiong, Shoudong Huang, Yi-ming Huang. 一种利用半稠密点云及RGB图像构建稠密表面模型地图的方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 594-606.
[7] Chao Li, Rong Xiong, Qiu-guo Zhu, Jun Wu, Ya-liang Wang, Yi-ming Huang. 基于髋策略的欠驱动双足机器人站立抗扰动恢复控制[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 579-593.
[8] Hüseyin Oktay Erkol, Hüseyin Demirel. 多自由度系统运动学方程求解的VHDL应用[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1164-1173.
[9] Qian Bi, Can-jun Yang. 人机交互力控制:针对食指外骨骼控制的模型参考自适应阻抗控制策略[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(4): 275-283.
[10] Shuang-shuang Fan, Can-jun Yang, Shi-lin Peng, Kai-hu Li, Yu Xie, Shao-yong Zhang. Underwater glider design based on dynamic model analysis and prototype developmentv[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(8): 583-599.
[11] Xin Ma, Ya Xu, Guo-qiang Sun, Li-xia Deng, Yi-bin Li. State-chain sequential feedback reinforcement learning for path planning of autonomous mobile robots[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 167-178.
[12] Hao-jie Zhang, Jian-wei Gong, Yan Jiang, Guang-ming Xiong, Hui-yan Chen. An iterative linear quadratic regulator based trajectory tracking controller for wheeled mobile robot[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(8): 593-600.
[13] Zheng-wei Zhang, Hong Zhang, Yi-bin Li. Biologically inspired collective construction with visual landmarks[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(5): 315-327.
[14] Shuang-quan Wen, Tie-jun Wu. Grasp evaluation and contact points planning for polyhedral objects using a ray-shooting algorithm[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(3): 218-231.
[15] Wen-fei WANG, Rong XIONG, Jian CHU. Map building for dynamic environments using grid vectors[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(7): 574-588.