浙江大学学报(工学版), 2019, 53(3): 503-511 doi: 10.3785/j.issn.1008-973X.2019.03.011

土木工程

基于Zig-zag理论的波形钢腹板梁自由振动分析

胡霖远,, 陈伟球, 张治成, 徐荣桥,

Free vibration analysis of concrete beams with corrugated steel webs based on Zig-zag theory

HU Lin-yuan,, CHEN Wei-qiu, ZHANG Zhi-cheng, XU Rong-qiao,

通讯作者: 徐荣桥, 男, 教授, 博士. orcid.org/0000-0002-0005-9737. E-mail: xurongqiao@zju.edu.cn

收稿日期: 2018-01-7  

Received: 2018-01-7  

作者简介 About authors

胡霖远(1993—),男,硕士生,从事组合梁理论研究.orcid.org/0000-0002-9453-2694.E-mail:hulinyuan@zju.edu.cn , E-mail:hulinyuan@zju.edu.cn

摘要

根据波形钢腹板梁的特点,将波形钢腹板梁模拟为具有正交各向异性层的夹芯梁,并引入层间连续的Zig-zag位移假设和分层抛物线分布的横向切应力假设,基于混合能变分原理,建立波形钢腹板梁自由振动的Zig-zag理论. 该理论的横向切应力满足上、下表面为0以及层间连续条件,因此无需引入剪切修正系数. 导出波形钢腹板梁的频率方程,得到不同边界条件下的频率和振型. 与其他方法的对比表明该理论能够精确地预测波形钢腹板梁的动力学特性.

关键词: 波形钢腹板 ; Zig-zag理论 ; 混合能变分原理 ; 自由振动 ; 频率 ; 振型

Abstract

Concrete beams with CSWs were idealized as sandwich beams with an orthotropic core, according to the characteristics of the corrugated steel web (CSW). The assumptions of a zig-zag displacement and a layer-wise parabolic distribution of the transverse shear stress were introduced to derive the governing equations for the free vibration of concrete beams with CSWs based on the variational principle of mixed energy. The transverse shear stress in the developed theory satisfied the traction-free condition at both top and bottom surfaces of the beam, as well as the continuity condition at the interfaces between adjacent layers. The shear correction factor is therefore not necessary. The frequency equation of the beam with CSWs was derived and solved analytically for the frequencies and corresponding mode shapes under various boundary conditions. Comparisons with other methods indicate that the present theory can accurately predict the dynamic behavior of such beams.

Keywords: corrugated steel web ; Zig-zag theory ; variational principle of mixed energy ; free vibration ; frequency ; mode shape

PDF (751KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

胡霖远, 陈伟球, 张治成, 徐荣桥. 基于Zig-zag理论的波形钢腹板梁自由振动分析. 浙江大学学报(工学版)[J], 2019, 53(3): 503-511 doi:10.3785/j.issn.1008-973X.2019.03.011

HU Lin-yuan, CHEN Wei-qiu, ZHANG Zhi-cheng, XU Rong-qiao. Free vibration analysis of concrete beams with corrugated steel webs based on Zig-zag theory. Journal of Zhejiang University(Engineering Science)[J], 2019, 53(3): 503-511 doi:10.3785/j.issn.1008-973X.2019.03.011

波形钢腹板具有质量轻、正交各向异性等特点[1],用其代替混凝土腹板,在减轻结构自重和提高预应力效率方面优势明显[2],因此得到了推广和应用[3-5],并成为组合结构桥梁最有前景的发展方向之一. 由于轻质的特点,波形钢腹板梁在地震多发地区尤受欢迎. Chen等[6]开发了一套考虑隔板及剪切变形因素的夹芯梁模型,并用该模型来预测波形钢腹板梁的弯曲振动. Mo等[7]对波形钢腹板梁的滞回曲线、延性因子、能量耗散和破坏模式等抗震性能进行了测试. 韦忠瑄等[8]对波形钢腹板梁的固有振动频率进行了理论研究,发现基频与试验结果较吻合.

Zig-zag理论模型常用于描述层合结构的分段连续位移场,并在每个界面处保证层间横向切应力的连续[9]. Ambartsumian[10]结合Zig-Zag理论将Reissner-Mindlin板理论推广到层合结构. Reissner等[11-12]提出了混合能变分原理,指出其适用于层合结构的简化理论推导. Murakami[13]基于混合能变分原理提出了层间位移和横向应力连续的Zig-zag理论.

本文通过波形钢腹板的均匀化和截面转换,将波形钢腹板混凝土梁理想化为夹心梁,然后基于混合能变分原理,引入Zig-zag位移和横向应力假设,推导波形钢腹板混凝土梁动力问题的控制方程,求出不同边界条件下的自振频率及其振型,并将其与其他结果进行对比分析,验证本文方法的有效性.

1. 波形钢腹板梁及其夹芯梁模型

波形钢腹板梁由混凝土顶板、底板以及波形钢腹板组成. 波形钢腹板由于在纵向和横向刚度差异较大,可被均匀化为正交各向异性层,并假定钢腹板与上、下混凝土板完美黏结. 设波形钢腹板的弹性模量为Es,泊松比为μs,剪切模量为Gs,密度为ρs,厚度为t,几何形状如图1所示. 没混凝土的弹性模量为Ec,泊松比为μc,密度为ρc. 同时,为了方便考虑各物理量沿梁高度方向的分布特性,把波形钢腹板梁的箱型截面转化为矩形截面,并按Xu等[14]的研究进行相应的材料参数转化,如图2所示.

图 1

图 1   波形钢腹板(CSW)的几何形状

Fig.1   Geometric configuration of corrugated steel web (CSW)


图 2

图 2   CSW梁的原始截面和等效截面

Fig.2   Original and equivalent cross sections of CSW beam


将上、下混凝土板转换为宽度为b0的各向同性层,其等效的材料特性为

${E_i} = {E_{\rm{c}}}\displaystyle\frac{{{b_i}}}{{{b_{\rm{0}}}}},\;\;{\mu _i} = {\mu _{\rm{c}}},\;\;{\rho _i} = {\rho _{\rm{c}}}\displaystyle\frac{{{b_i}}}{{{b_{\rm{0}}}}},\;\;i = 1,3.$

式中:Ei为第i层转换后的弹性模量,μi为第i层转换后的泊松比,ρi为第i层转换后的密度,并有b0=1 m.

x轴为梁的轴线方向,z轴为梁的高度方向,参照Johnson等[15]的研究,波形钢腹板可均匀化为正交各向异性材料,ExEz为均匀化后的弹性模量,μxzμzx为均匀化后的泊松比,Gxz为均匀化后的剪切模量,ρ2为均匀化后的密度:

$\left. \begin{array}{l} {E_x} = {E_{\rm{s}}}\displaystyle\frac{{A + C}}{{3A + D}}{\left(\displaystyle\frac{t}{H}\right)^2}\frac{{2t}}{{{b_0}}}, \;\; {E_z} = {E_{\rm{s}}}\displaystyle\frac{{A + D}}{{A + C}}\displaystyle\frac{{2t}}{{{b_0}}} , \\ {\mu _{zx}} = {\mu _{\rm{s}}}, \;\; {\mu _{xz}} = {\mu _{\rm{s}}}\displaystyle\frac{{{E_x}}}{{{E_z}}}, \\ {G_{xz}} = {G_{\rm{s}}}\displaystyle\frac{{A + C}}{{A + D}}\displaystyle\frac{{2t}}{{{b_0}}}, \;\; {\rho _{\rm{2}}} = {\rho _{\rm{s}}}\displaystyle\frac{{A + C}}{{A + D}}\displaystyle\frac{{2t}}{{{b_0}}}. \\ \end{array} \right\}$

式中:ACDH为波形钢腹板的几何尺寸,具体如图1中所示.

2. 平面问题自由振动的混合能变分原理

对于 $xz$ 平面内的自由振动问题,应变的振幅为 ${{\varepsilon }} = {[{\varepsilon _x}\;\;{\varepsilon _z}\;\;{\gamma _{xz}}]^{\rm T}}$,位移振幅为 ${{u}} = {\left[ {{u_x}\;\;{u_z}} \right]^{\rm{T}}}$,应力振幅为 ${{\sigma }} = {[{\sigma _x}\;\;{\sigma _z}\;\;{\tau _{xz}}]^{\rm{T}}}$. 为了简便,后面的文字描述中统一省略“振幅”. 应力与应变的关系可写为

${{\sigma }} = {{D}}{{\varepsilon }}, \;\; {{D}} = {\left[ {{D_{ij}}} \right]_{3 \times 3}}.$

式中:Dij为材料常数. 对于混凝土顶底板,简化为各向同性材料,矩阵D中的非零元素为

$ \begin{array}{l} \!\!\! \!\! \!\! \! {D_{11}} \!=\! {D_{22}} \!=\! \displaystyle\frac{{{E_i}}}{{1 - \mu _i^2}}, \; {D_{12}} \!=\! \displaystyle\frac{{{\mu _i}{E_i}}}{{1 - \mu _i^2}}, \; {D_{33}} \!= \!\displaystyle\frac{{{E_i}}}{{2(1 + {\mu _i})}}.\quad\quad \end{array} $

对于波形钢腹板等效成正交各向异性的中间层,矩阵D中的非零元素为

$ \left. \begin{array}{l} {D_{11}} = \displaystyle\frac{{{E_x}}}{{1 - {\mu _{xz}}{\mu _{zx}}}}, \;\; {D_{22}} = \displaystyle\frac{{{E_z}}}{{1 - {\mu _{xz}}{\mu _{zx}}}}, \\ {D_{12}} = \displaystyle\frac{{{\mu _{zx}}{E_x}}}{{1 - {\mu _{xz}}{\mu _{zx}}}}, \;\; {D_{33}} = {G_{xz}}. \\ \end{array} \right\}$

自由振动可用如下的泛函极值问题[16]表示

${\omega ^2} = {\rm{st}}\;\; \displaystyle\frac{{{{\varPi }_{\varepsilon }}}}{{{{\varPi }_{\rm{d}}}}},$

式中:ω为自由振动频率, ${\rm{st}} $ 表示取极值,而 ${{\varPi }_{\varepsilon }}$ 为振动过程中的最大应变能,即

${{\varPi }_{\text{ε} }} = \frac{1}{2}\iint\limits_\varOmega {{{{\varepsilon }}^{\rm{T}} }{{D}}{{\varepsilon }}\;{\rm{d}} x{\rm{d}} z},$

其中,Ω为梁所占的平面区域. ${\varPi _{\rm{d}}}$ 则与梁的动能相关:

${{\varPi }_{\rm{d}}} = \frac{1}{2}\iint\limits_\varOmega {\rho {{{u}}^{\rm{T}} }{{u}}\;{\rm{d}} x{\rm{d}} z}.$

通过Legendre变换,最大应变能 ${{\varPi }_{\text{ε} }}$ 可化为由应力和位移表示的混合能:

$\begin{aligned} {{\varPi }_{\rm{H}}} =& \displaystyle\iint\limits_\varOmega {\Bigg[{\tau _{xz}}({u_{x,z}} + {u_{z,x}}) + {\sigma _z}\left({u_{z,z}} + \displaystyle\frac{{{D_{12}}}}{{{D_{22}}}}{u_{x,x}}\right)} - \\ & \displaystyle\frac{{\sigma _z^2}}{{2{D_{22}}}} - \displaystyle\frac{{\tau _{xz}^2}}{{2{D_{33}}}} + \displaystyle\frac{1}{2}{{\bar D}_{11}}u_{x,x}^2\Bigg]{\rm{d}} x{\rm{d}} z. \end{aligned} $

式中:下标逗号表示对紧跟后面的坐标求导数. 式(9)中的应力和位移是独立的自变函数,因此非常适合于在层合结构中独立地对应力和位移作出尽可能反应实际情况的分布假设.

至此,平面问题的自由振动转化为如下的泛函极值问题:

${\omega ^2} = {\rm{st}}\; \displaystyle\frac{{{{\varPi }_{\rm{H}}}}}{{{{\varPi }_{\rm{d}}}}}.$

3. 波形钢腹板梁自由振动的Zig-zag理论

3.1. 位移和应力假设

由于波形钢腹板梁的混凝土顶底板与波形钢腹板的轴向刚度相差较大,经典梁理论中的平截面假定与实际相差甚远,采用Zig-zag位移假设. 引入新的位移量s表示轴向位移的弯折程度[13],即

$\left. \begin{array}{l} u_x^{(k)}(x,z) = u(x) + z\psi (x) + {( - 1)^k}2{{\bar z}_k}s(x) , \\ u_z^{(k)}(x,z) = w(x) . \\ \end{array} \right\}$

式中:k=1,2,3; $u_x^{(k)}$$u_z^{(k)}$ 分别为层合梁中第 $k$ 层的2个位移分量; $u$$w$ 分别为z=0处的轴向位移和挠度,而 ${h_k}$ 则为第k层的厚度; ${\bar z_k}$ 为以第k层的中心为原点的局部坐标并用该层的高度无量纲化,即如果第k层的中心位置用 ${z_{k0}}$ 表示,那么

${\bar z_k} = \frac{{{z_k}}}{{{h_k}}}, \; {z_k} = z - {z_{k0}}.$

横向切应力可独立地假设为

$\begin{split} \tau _{xz}^{(k)}(x,z) = \displaystyle\frac{3}{{2{h_k}}}\left(1 - 4\bar z_k^2\right){Q_k}(x) + \\ \quad\quad\quad\quad\left(\!3\bar z_k^2 \!+\! {{\bar z}_k} \!-\! \displaystyle\frac{1}{4}\! \right){\tau_{k \!-\! 1}}(x) \!+\! \left(\!3\bar z_k^2 \!- \!{{\bar z}_k}\! -\! \!\displaystyle\frac{1}{4}\right){\tau_k}(x) . \\ \end{split} $

式中: ${\tau_{k - 1}}$${\tau_k}$ 分别为第 $k$ 层上表面和下表面处的切应力值,而 ${Q_k}$ 则为第k层截面上的切应力 ${\tau_{xz}}$合力.

一般地, $z$ 向正应力 ${\sigma _z}$ 在梁理论中直接忽略,因此在整个截面上可令 ${\sigma _z} = 0$,从而式(9)中的混合能 ${{\varPi }_{\rm{H}}}$ 可简化为

$\begin{aligned} {{\varPi }_{\rm{H}}} =& \int\limits_l {{\rm{\Bigg\{ }}\displaystyle\sum\limits_{k = 1}^3 \;{\int\limits_{ - {1 / 2}}^{{1 / 2}} {\bigg[\tau _{xz}^{(k)}(u_{x,z}^{(k)} + {u_z}{,_x}) - } } } \\ & {{{{\left(\tau _{xz}^{(k)}\right)}^2}}}\Big/ \left({{2D_{33}^{(k)}}}\right) + \displaystyle\frac{1}{2}\bar D_{11}^{(k)}{\left(u_{x,x}^{(k)}\right)^2}\bigg]{h_k}{\rm{d}} {{\bar z}_k}\Bigg\} {\rm{d}} x. \\ \end{aligned} $

式中: $l$ 为梁长.

另外,对于梁的振动,挠度产生的动能占主要部分,因此式(8)可简化为

${{\varPi }_{\rm{d}}} = \frac{1}{2}\overline {\rho A} \int\limits_l {{w^2}{\rm{d}} x} ,$

式中: $\overline {\rho A} = {\rho _1}{h_1} + {\rho _2}{h_2} + {\rho _3}{h_3}$.

3.2. 自由振动控制方程

把式(11)和(13)中的位移和应力代入式(14)中的混合能表达式,完成 $z$ 向的积分,再代入式(10)并完成变分运算,可得

$ \left. \begin{array}{l} \displaystyle\sum\limits_{k = 1}^3 {{Q_{k,\,\,x}}} + \overline {\rho A} {\omega ^2}w = 0,\;\;\;\;{M_{,\,\, x}} - \displaystyle\sum\limits_{k = 1}^3 {{Q_k}} = 0,\\ {N_{,\,\, x}} = 0,\;\;\;\;{P_{,\,\, x}} - \displaystyle\sum\limits_{k = 1}^3 {\left[ {{{( - 1)}^k}{{2{Q_k}} / {{h_k}}}} \right]} = 0; \end{array} \right\} $

以及本构关系:

$\begin{split} & {Q_k} - \displaystyle\frac{{{h_k}}}{{12}}({\tau _{k - 1}} + {\tau _k}) = \\ & \quad\quad \displaystyle\frac{5}{6}D_{33}^{(k)}{h_k}\left[{w_{,x}} + \psi + 2{( - 1)^k}\displaystyle\frac{s}{{{h_k}}}\right] ;\qquad\qquad\; \end{split}$

$ \begin{split} M = & \displaystyle\sum\limits_{k = 1}^3 {} \left[\overline D_{11}^{(k)}\left(\displaystyle\frac{{h_k^3}}{{12}} + z_{k0}^2{h_k}\right){\psi _{,x}} +\right. \\ & \left. \overline D_{11}^{(k)}{z_{k0}}{h_k}{u_{,x}} + {( - 1)^k}\overline D_{11}^{(k)}\displaystyle\frac{{h_k^2}}{6}{s_{,x}}\right], \end{split} \qquad\qquad $

$ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!N = \displaystyle\sum\limits_{k = 1}^3 {\left[\overline D_{11}^{(k)}{h_k}{u_{,x}} + \overline D_{11}^{(k)}{z_{k0}}{h_k}{\psi _{,x}}\right]} ,$

$ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!P = \displaystyle\sum\limits_{k = 1}^3 {\Bigg[\overline D_{11}^{(k)}\displaystyle\frac{{{h_k}}}{3}{s_{,x}} + {{( - 1)}^k}\overline D_{11}^{(k)}\displaystyle\frac{{h_k^2}}{6}{\psi _{,x}}} \Bigg];$

以及2个辅助方程:

$\begin{aligned} \left. \begin{aligned} - \displaystyle\frac{{{h_1}}}{{30D_{33}^{(1)}}}{\tau_0}& \!+ \!\left(\displaystyle\frac{{2{h_2}}}{{15D_{33}^{(2)}}} \!+\! \displaystyle\frac{{2{h_1}}}{{15D_{33}^{(1)}}}\right){\tau_1} \!- \! \\ & \displaystyle\frac{{{h_2}}}{{30D_{33}^{(2)}}}{\tau_2} \!-\! \displaystyle\frac{1}{{10D_{33}^{(2)}}}{Q_2} - \displaystyle\frac{1}{{10D_{33}^{(1)}}}{Q_1} \!=\! 0, \\ \!-\! \displaystyle\frac{{{h_2}}}{{30D_{33}^{(2)}}}{\tau_1} & \!+\! \left(\displaystyle\frac{{2{h_3}}}{{15D_{33}^{(3)}}} \!+ \!\displaystyle\frac{{2{h_2}}}{{15D_{33}^{(2)}}}\right){\tau_2} \!- \! \\ & \displaystyle\frac{{{h_3}}}{{30D_{33}^{(3)}}}{\tau_3} \!-\! \displaystyle\frac{1}{{10D_{33}^{(3)}}}{Q_3} \!-\! \displaystyle\frac{1}{{10D_{33}^{(2)}}}{Q_2} \!=\! 0. \\ \end{aligned} \right\} \\ \\ \end{aligned} $

根据上、下表面边界条件,应有τ0=τ3=0. 其中P为引入的新位移量s所对应的内力,同时M$\psi $ 对应,Qw对应,Nu对应. 式(16)~(21)是波形钢腹板梁自由振动的控制方程,共12个,可求解12个未知数,即4个位移分量,3个内力以及5个截面切应力参数.

3.3. 用位移表示的控制方程

联立式(16)~(21),消去其他物理量后,可得只包含挠度w的常微分方程:

$\begin{split} {b_{11}}{w_{,xxxxxx}} +& \left({b_{22}}{\rm{ + }}\overline {\rho A} {\omega ^2}{b_{33}}\right){w_{,xxxx}}{\rm{ + }} \\ & \overline {\rho A} {\omega ^2}{b_{44}}{w_{,xx}}{\rm{ + }}\overline {\rho A} {\omega ^2}{b_{55}}w = 0. \end{split} $

式中:biii=1,2,3,4,5)是与波形钢腹板梁的几何尺寸和材料参数有关的常数,定义如下:

$\left. \begin{array}{l} {b_{11}} = - \displaystyle\frac{{{a_3}}}{{{a_1}}}{A_1}, \; {b_{22}} = {a_2} - \displaystyle\frac{{{a_2}}}{{{a_1}}}{A_1}, \;{b_{33}} = - \displaystyle\frac{{{a_3}}}{{{a_1}}}, \\ {b_{44}} = {a_4} + \displaystyle\frac{{{a_3}{A_3}}}{{{a_1}{B_3}}} - \displaystyle\frac{{{a_2}}}{{{a_1}}}, \; {b_{55}} = \displaystyle\frac{{{a_2}{A_3}}}{{{a_1}{B_3}}}. \\ \end{array} \right\}$

其中,

$ \left. \begin{array}{l} {A_i} = {k_{1i}} + {k_{2i}} + {k_{3i}}, \; \\ {A_{ii}} = 2\left( - \displaystyle\frac{{{k_{1i}}}}{{{h_1}}} + \displaystyle\frac{{{k_{2i}}}}{{{h_2}}} - \displaystyle\frac{{{k_{3i}}}}{{{h_3}}}\right) , {i = 1,2,3}; \\ \end{array} \right\} $

$\left. \begin{array}{l} {a_1} = {A_2} - \displaystyle\frac{{{A_3}}}{{{B_3}}}\left({B_1} - \displaystyle\frac{{B_2^2}}{{{C_1}}}\right), \; {a_2} = \displaystyle\frac{{{A_{33}}}}{{{A_3}}}{A_1} - {A_{11}}, \\ {a_3} = {B_3} - \displaystyle\frac{{{C_1}}}{{3{B_3}}}\left({B_1} - \displaystyle\frac{{B_2^2}}{{{C_1}}}\right), \;{a_4} = \displaystyle\frac{{{A_{33}}}}{{{A_3}}} - \displaystyle\frac{{{C_1}}}{{3{B_3}}}; \\ \end{array} \right\} $

$ \left. \begin{array}{l} {B_1} = \displaystyle\sum\limits_{k = 1}^3 {\bar D_{11}^{(k)}\left(\displaystyle\frac{{h_k^3}}{{12}} + z_{k0}^2{h_k}\right)} , \; {B_2} = \displaystyle\sum\limits_{k = 1}^3 {\bar D_{11}^{(k)}{z_{k0}}{h_k}} , \\ {B_3} = \displaystyle\sum\limits_{k = 1}^3 {{{( - 1)}^k}\bar D_{11}^{(k)}\displaystyle\frac{{h_k^2}}{6}} , \;{C_1} = \displaystyle\sum\limits_{k = 1}^3 {\bar D_{11}^{(k)}{h_k}}. \\ \end{array} \right\}$

其中,kiji=1,2,3,4,5;j=1,2,3)是与波形钢腹板梁的几何参数和材料参数有关的常数,详见附录A.

其他物理量也可用挠度w表示. 联立式(16)~(21),通过积分和化简可得由挠度w表示的位移及内力表达式.

$ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\begin{aligned} \psi =& {\varphi _1}{w_{,xxxxx}} + \left({\varphi _2} + \overline {\rho A} {\omega ^2}{\varphi _4}\right){w_{,xxx}} + \\ &\left({\varphi _3} + \overline {\rho A} {\omega ^2}{\varphi _5}\right){w_{,x}}, \\ \end{aligned} $

$s = {s_1}{w_{,xxxxx}} + \left({s_2} + \overline {\rho A} {\omega ^2}{s_3}\right){w_{,xxx}} + \overline {\rho A} {\omega ^2}{s_4}{w_{,x}}.$

式中:

$\left. \begin{array}{l} {\varphi _1}{\rm =} \left({d_1} - {d_2}\displaystyle\frac{{{A_2}}}{{{A_3}}}{\rm{}}\right)\displaystyle\frac{{{a_3}{A_1}}}{{{a_1}{a_2}}},\quad {\varphi _2} = - {d_1},\quad {\varphi _3} = - 1,\\ {\varphi _4} = \displaystyle\frac{{{\varphi _1}}}{{{A_1}}},\quad {\varphi _5} = - \left[\displaystyle\frac{{{\varphi _1}}}{{{A_1}}}\left(\displaystyle\frac{{{A_3}}}{{{B_3}}} + \displaystyle\frac{{{a_1}{a_4}}}{{{a_3}}}\right) + \displaystyle\frac{{{d_2}}}{{{A_3}}}\right],\\ {s_1}{\rm{ = }}\left({d_3} - {d_4}\displaystyle\frac{{{A_2}}}{{{A_3}}}{\rm{}}\right)\displaystyle\frac{{{a_3}{A_1}}}{{{a_1}{a_2}}},\quad {s_2} = - {d_3},\quad {s_3} = \displaystyle\frac{{{s_1}}}{{{A_1}}},\\ {s_4} = - \left[\displaystyle\frac{{{s_1}}}{{{A_1}}}\left(\displaystyle\frac{{{A_3}}}{{{B_3}}} + \displaystyle\frac{{{a_1}{a_4}}}{{{a_3}}}\right) + \displaystyle\frac{{{d_4}}}{{{A_3}}}\right]; \end{array} \right\}$

$\left. \begin{array}{l} {d_1} = \displaystyle\frac{1}{{{a_2}}}\left[\displaystyle\frac{{{A_{33}}}}{{{A_3}}}\left({B_1} - \displaystyle\frac{{B_2^2}}{{{C_1}}}\right) - {B_3}\right], \\ {d_2}{\rm{ = }}\displaystyle\frac{1}{{{a_2}}}\left(\displaystyle\frac{{{A_{33}}}}{{{A_3}}}{B_3} - \displaystyle\frac{1}{3}{C_1}\right), \\ {d_3} = - \displaystyle\frac{{{A_2}}}{{{a_2}{A_3}}}\left[\displaystyle\frac{{{A_{22}}}}{{{A_2}}}\left({B_1} - \displaystyle\frac{{B_2^2}}{{{C_1}}}\right) - {B_3}\right], \\ {d_4}{\rm{ = }} - \displaystyle\frac{{{A_2}}}{{{a_2}{A_3}}}\left(\displaystyle\frac{{{A_{22}}}}{{{A_2}}}{B_3} - \displaystyle\frac{1}{3}{C_1}\right). \\ \end{array} \right\}$

轴向位移u

$\begin{split} u = & {\beta _1}x + {\beta _2} + {u_1}{w_{,xxxxx}} + \\ & \left({u_2} + \overline {\rho A} {\omega ^2}{u_4}\right){w_{,xxx}} + \left({u_3} + \overline {\rho A} {\omega ^2}{u_5}\right){w_{,x}}. \end{split} $

式中: ${\beta _1}$${\beta _2}$ 为积分常数,

${u_i}{\rm{ = }} - \frac{{{B_2}}}{{{C_1}}}{\varphi _i} ,\;i = 1,2,3,4,5 .$

同样地,可以得到用挠度w表示的内力 $M$QNP

$ \begin{split} M =& {m_1}{w_{,xxxx}} + \left({m_2} + \overline {\rho A} {\omega ^2}{m_3}\right){w_{,xx}} + \qquad \\ & \overline {\rho A} {\omega ^2}{m_4}w + {B_2}{\beta _1}, \\ \end{split} $

$ Q\! =\!\! {m_1}{w_{,xxxxx}} \!+\! \left({m_2} \!+\! \overline {\rho A} {\omega ^2}{m_3}\right){w_{,xxx}} \!\!+\! \! \overline {\rho A} {\omega ^2}{m_4}{w_{,x}}, \qquad\quad $

$N = {C_1}{\beta _1},\qquad$

$\begin{aligned} \!\! P = {p_1}{w_{,xxxx}} + \left({p_2} + \overline {\rho A} {\omega ^2}{p_3}{w_{,xx}}\right) + \overline {\rho A} {\omega ^2}{p_4}w. \qquad\\ \end{aligned} $

式中:

$\left. \begin{array}{l} {m_1} \!=\! \left({B_1} - \displaystyle\frac{{B_2^2}}{{{C_1}}} \!-\! {B_3}\displaystyle\frac{{{A_2}}}{{{A_3}}}\right)\displaystyle\frac{{{a_3}{A_1}}}{{{a_1}{a_2}}},\quad {m_2} \!\!=\!\! \displaystyle\frac{{B_2^2}}{{{C_1}}} - {B_1}, \\ {m_3}\! =\! \displaystyle\frac{{{m_1}}}{{{A_1}}},\quad {m_4}\! \!= \!\! - \left[\displaystyle\frac{{{m_1}}}{{{A_1}}}\left(\displaystyle\frac{{{A_3}}}{{{B_3}}} \!+\! \displaystyle\frac{{{a_1}{a_4}}}{{{a_3}}}\right) \!+\! \displaystyle\frac{{{B_3}}}{{{A_3}}}\right], \\ {p_1} \!=\! \left({B_3}\! -\! \displaystyle\frac{1}{3}{C_1}\displaystyle\frac{{{A_2}}}{{{A_3}}}\right)\displaystyle\frac{{{a_3}{A_1}}}{{{a_1}{a_2}}},\quad {p_2} \!= \! - {B_3}, \\ {p_3} \!=\! \displaystyle\frac{{{p_1}}}{{{A_1}}},\quad {p_4} \!\!= \!\! - \left[\displaystyle\frac{{{p_1}}}{{{A_1}}}\left(\displaystyle\frac{{{A_3}}}{{{B_3}}} \!+\! \displaystyle\frac{{{a_1}{a_4}}}{{{a_3}}}\right) \!\!+\! \displaystyle\frac{1}{3}\displaystyle\frac{{{C_1}}}{{{A_3}}}\right]. \\ \end{array} \!\!\!\!\!\!\!\! \right\}$

4. 频率与振型

4.1. 两端简支波形钢腹板梁的振动频率

对于两端简支边界条件,可设振型为

$w(x) = {w_0}\sin \; (\xi x).$

式中: $\xi = {{n\pi } / l}$. 将式(38)代入式(22)得

${\omega ^2} = \displaystyle\frac{1}{{\overline {\rho A} }}\displaystyle\frac{{{b_{11}}{\xi ^6} - {b_{22}}{\xi ^4}}}{{{b_{33}}{\xi ^4} - {b_{44}}{\xi ^2} + {b_{55}}}}.$

引入

${\alpha ^2} = - {{{b_{22}}} / {{b_{11}}}}, \; {\gamma _1} = \displaystyle\frac{{\overline {\rho A} }}{{\overline {EI} }}, \; {\gamma _2} = \displaystyle\frac{{\overline {EI} }}{{\overline {\kappa GA} }},$

${\beta ^2} = \overline {EI} \displaystyle\frac{1}{{{A_1}}}\left(\displaystyle\frac{{{A_3}}}{{{B_3}}} + \displaystyle\frac{{{a_1}{a_4}}}{{{a_3}}} - \displaystyle\frac{{{a_1}{a_2}}}{{{A_1}{a_3}}}\right).\qquad$

式中:αβ是由于引入Zig-zig位移模式带来的与材料参数及几何尺寸相关的参数,而 $\overline {EI} $ 是不考虑Zig-zag位移模式时组合梁的抗弯刚度, $\overline {\kappa GA} $ 则是考虑剪切变形后整个截面的抗剪刚度,具体表达式为

$\begin{aligned} \overline {EI} =& \displaystyle\sum( {EI}) + \left({E_1}{h_1}{E_2}{h_2}d_{12}^2 + {E_1}{h_1}{E_3}{h_3}d_{13}^2 + \right. \\ & \left.{E_2}{h_2}{E_3}{h_3}d_{23}^2\right)\Big/\left({E_1}{h_1} + {E_2}{h_2} + {E_3}{h_3}\right), \\ \end{aligned} $

$\begin{aligned} \overline {\kappa GA} {\rm{ = }}& \displaystyle\frac{5}{6}\left(D_{33}^{(1)}{h_1} + D_{33}^{(2)}{h_2} + D_{33}^{(3)}{h_3}\right) + \\ & \displaystyle\frac{{{k_{41}}}}{{12}}({h_1} + {h_2}) + \displaystyle\frac{{{k_{51}}}}{{12}}({h_2} + {h_3}). \qquad\qquad \quad \end{aligned} $

式中: ${d_{ij}} = {z_i}_0-{z_j}_0$ 为第i和第j层形心之间的距离. 至此,式(39)可转化为

${\omega ^2} = (1 - {f_{{\text{zig-zag}}}}){f_{{\rm{shear}}}}\omega _0^2 .$

式中: $\omega _0^2 = {{{\xi ^4}} / {{\gamma _1}}} = {({{n\pi } / l})^4}{{\overline {EI} } / {\overline {\rho A} }}$ 为经典梁理论中组合梁的自振频率,而fzig-zagfshear代表引入Zig-zag位移模式以及考虑剪切变形对组合梁自振频率的影响,分别为

$\left. \begin{array}{l} {f_{{\text{zig-zag}}}} = \displaystyle\frac{{{\beta ^2} - 1}}{{{\beta ^2} + {\alpha ^2}/{\xi ^2}}}, \\ {f_{{\rm{shear}}}} = \displaystyle\frac{1}{{1 + {\gamma _3}{\xi ^2}(1 - {f_{{\text{zig-zag}}}})}}. \\ \end{array} \right\}$

式(45)与Xu等[17]得出的自振频率表达形式一致.

为了验证本文公式,以一实际波形钢腹板梁为例,总高度为2.5 m,其中混凝土顶板和底板的厚度均为250 mm,跨径为45 m,顶板宽为25 m,底板宽为15 m. 混凝土的弹性模量为34.5 GPa,泊松比0.2,密度为2 400 kg/m3,波形钢腹板材料的弹性模量为200 GPa,泊松比为0.3,密度为7 850 kg/m3. 另外设波形钢腹板的几何参数为A=430 mm、C=370 mm、D=430 mm、H=220 mm、t=16 mm. 换算时取b0 = 1 m,那么换算后的材料参数如下:混凝土顶板E1=862.5 GPa、μ1=0.2、ρ1=60 000 kg/m3,波形钢腹板D11=15.7 MPa、D22=6.88 GPa、D12=4.72 GPa、D33=2.29 Gpa、ρ2=270.04 kg/m3,混凝土底板E3=517.5 GPa、μ3=0.2、ρ3=36 000 kg/m3. 所得自振频率如表1所示,其中n为频率阶数,f为自振频率,δ为相对误差.

表 1   简支(SS)波形钢腹板(CSW)梁自振频率

Tab.1  Natural frequency of simply support (SS) beam with simply support (SS)

n f/Hz δ/% f/Hz δ/%
有限元 本文方法 经典梁理论
1 17.191 17.218 0.16 19.950 16.05
2 51.768 51.904 0.26 79.800 54.15
3 88.945 89.264 0.36 179.550 101.90
4 126.248 126.572 0.26 319.200 152.80
5 162.577 163.840 0.78 498.749 206.80
6 199.196 201.377 1.10 718.199 260.50
7 235.990 239.461 1.47 977.549 314.20
8 273.130 278.316 1.90 1 276.800 367.50

新窗口打开| 下载CSV


基于ABAQUS软件,采用八节点平面应力单元,上、下混凝土板的单元尺寸均为0.025 m×0.450 m,波形钢腹板层的单元尺寸为0.200 m×0.450 m,建立波形钢腹板梁的平面应力有限元模型以计算其动力特性. 从表1可以看出,Zig-zag梁理论所得自振频率与有限元结果基本吻合,而经典梁理论所得结果的误差随频率阶数迅速增加. 采用本文方法求得的前8阶自振频率与有限元结果的误差均小于2%,表明本文方法可精确地预测波形钢腹板梁的自由振动频率. 而经典梁理论的误差则要大得多,第1阶频率的误差就已经超过15%,高阶频率的误差更是迅速增加. 韦忠瑄等[8]曾引入修正系数以减少误差,但也只能改善基频的预测精度.

4.2. 其他边界条件下的振动频率

式(22)的通解可写为

$\begin{split} w(x) =& {c_1}\sin {k_1}x + {c_2}\cos {k_1}x + {c_3}{{\rm{e}} ^{ - {k_2}x}} + \\ & {c_4}{{\rm{e}} ^{{k_2}(x - l)}} + {c_5}{{\rm{e}} ^{ - {k_3}x}} + {c_6}{{\rm{e}} ^{{k_3}(x - l)}}. \end{split} $

式中: ${c_i}(i = 1,2, \cdots ,6)$ 是待定常数,由边界条件确定,而 ${k_i}\left( {i = 1,2,3} \right)$ 由式(22)的特征方程的特征根确定:

$\begin{array}{l} {b_{11}}{k^6} + \left({b_{22}} + \overline {\rho A} {\omega ^2}{b_{33}}\right){k^4} + \overline {\rho A} {\omega ^2}{b_{44}}{k^2} + \overline {\rho A} {\omega ^2}{b_{55}} = 0 . \end{array} $

其中,± ${k_1}$ 是2个共轭纯虚根的虚部,± ${k_2}$ 和± ${k_3}$ 则是另外4个实特征根,并令 ${k_i} > 0\left( {i = 1,2,3} \right),$采用式(46)形式的通解,既可以确保数值稳定,又可避免复数运算.

工程中常见的边界条件一般为简支、固支和自由3种,分别为

$ \text{简支:}w = 0, \; M = 0, \; N = 0, \; P = 0,$

$\!\text{固支:}w = 0, \; \psi = 0, \; u = 0, \; s = 0,\;\;$

$\text{自由:}M = 0, \; Q = 0, \; N = 0, \; P = 0.$

将通解代入式(48)~(50)可得关于待定系数ci的线性齐次方程组:

${{Ac}} = 0.$

式中: ${{c}} = {\left[ {{c_1},{c_2},{c_3},{c_4},{c_5},{c_6}} \right]^{\rm{T}}}$,系数矩阵A由边界条件确定,详见附录B. 为使待定系数ci有非零解,式(51)的系数矩阵的行列式必须为0,即

$\det \;({{A}}) = 0.$

式(52)就是波形钢腹板梁自由振动的特征方程,是一个关于频率的超越方程,通过数值求解,即可得到不同边界条件下的振动频率.

再次考虑等4.1节中的波形钢腹板梁. 针对两端简支(SS)情形,式(52)获得的频率与式(44)的结果(见表1)完全一致. 这是由于在两端简支情形下,式(46)的一般解退化为如式(38)所示的解.

针对两端固支(clamped-clamped,CC)、固支-简支(clamped-simple,CS)和固支-自由(clamped-free,CF)3种不同的边界条件的计算结果与比较如表2~4所示. 可以看出,其他边界条件下的误差与两端简支梁类似,本文所提的Zig-zag梁理论所得的振动频率与有限元结果吻合较好,第1阶频率与有限元结果的相对误差在0.2%以内,前8阶频率与有限元结果的相对误差均小于2.5%. 而采用平截面假设的经典梁理论高估了波形钢腹板梁的抗弯刚度,即使对于第1阶频率,误差也很大. 这个现象应该引起设计、施工和管理人员的重视.

表 2   两端固支(CC)波形钢腹板梁自振频率

Tab.2  Frequencies of clamped-clamped (CC) beam with CSWs

n f/Hz δ/% f/Hz δ/%
有限元 本文方法 经典梁理论
1 27.665 27.708 0.16 45.224 63.47
2 58.502 58.737 0.40 124.663 113.10
3 93.965 94.475 0.54 244.388 160.10
4 130.414 131.375 0.74 403.989 209.80
5 167.346 168.981 0.98 603.490 260.60
6 204.474 207.107 1.29 842.891 312.20
7 241.953 245.946 1.65 1 122.180 363.80
8 279.834 286.625 2.07 1 441.400 415.10

新窗口打开| 下载CSV


表 3   固支-简支(CS)波形钢腹板梁自振频率

Tab.3  Frequencies of clamped-simple (CS) beam with CSWs

n f/Hz δ/% f/Hz δ/%
有限元 本文方法 经典梁理论
1 22.435 22.473 0.17 31.166 38.91
2 55.357 55.537 0.33 100.997 82.45
3 91.464 91.880 0.46 210.723 130.40
4 128.171 128.980 0.63 360.348 181.10
5 164.940 166.390 0.88 549.874 233.40
6 201.835 204.220 1.18 779.299 286.10
7 238.937 242.671 1.56 1 048.61 338.90
8 276.454 281.931 1.98 1 357.84 391.20

新窗口打开| 下载CSV


表 4   固支-自由(CF)波形钢腹板梁自振频率

Tab.4  Frequencies of clamped-free (CF) beam with CSWs

n f/Hz δ/% f/Hz δ/%
有限元 本文方法 经典梁理论
1 6.593 6.599 0.10 7.107 7.80
2 30.762 30.913 0.49 44.539 44.79
3 67.243 67.647 0.60 124.713 85.47
4 104.546 105.350 0.77 244.384 133.70
5 142.189 143.544 0.95 403.989 184.10
6 179.391 181.642 1.26 603.490 236.40
7 216.701 220.171 1.60 842.890 289.00
8 254.029 259.211 2.04 1 122.180 341.80

新窗口打开| 下载CSV


4.3. 振型

将第4.2节中得到的不同边界条件下的自振频率 $\omega $ 代回系数矩阵A ,则通过式(51)可解得6个待定系数 ${c_i}(i = 1,2, \cdots ,6)$ 之间的比例关系,从而得到对应边界条件下波形钢腹板梁的振型. 两端简支(SS)、两端固支(CC)、固支-简支(CS)和固支-自由(CF)4种常见的边界条件下,前3阶振型如图3所示. 图3同时给出了有限元结果,可以看出,本文结果与有限元结果吻合良好.

图 3

图 3   波形钢腹板梁的前3阶振型模态

Fig.3   First three mode shapes of beam with CSWs


5. 结 语

本文基于平面问题自由振动的混合能变分原理,通过假设Zig-zag形式的轴向位移和分层二次抛物线分布的横向切应力,建立了波形钢腹板梁自由振动的Zig-zag理论,给出了不同边界条件下的频率和振型的控制方程. 数值结果表明,相比经典梁理论,提出的Zig-zag理论能精确地计算波形钢腹板梁的振动频率及其振型,频率的误差随振动阶数的增加非常缓慢,适用于需要求解高阶频率的情形. 同时,经典梁理论高估了波形钢腹板梁的抗弯刚度,计算得到的振动频率远高于实际值,需要引起注意.

值得指出的是,该理论的横向切应力满足上、下表面为0以及层间连续条件,因此与一般的高阶梁理论(如Timoshenko梁理论)不同,无须引入剪切修正系数.

参考文献

陈宝春, 黄卿维

波形钢腹板PC箱梁桥应用综述

[J]. 公路, 2005, 7 (7): 45- 53

DOI:10.3969/j.issn.1002-0268.2005.07.011      [本文引用: 1]

CHEN Bao-chun, HUANG Qing-wei

Summary of application of prestressed concrete box-girder bridges with corrugated steel webs

[J]. Highway, 2005, 7 (7): 45- 53

DOI:10.3969/j.issn.1002-0268.2005.07.011      [本文引用: 1]

JIANG R J, KWONG AU F T, XIAO Y F

Prestressed concrete girder bridges with corrugated steel webs: review

[J]. Journal of Structural Engineering, 2014, 141 (2): 04014108

[本文引用: 1]

DAYYANI I, SHAW A D, FLORES E I S, et al

The mechanics of composite corrugated structures: a review with applications in morphing aircraft

[J]. Composite Structures, 2015, 133: 358- 380

DOI:10.1016/j.compstruct.2015.07.099      [本文引用: 1]

OH J Y, LEE D H, KIM K S

Accordion effect of prestressed steel beams with corrugated webs

[J]. Thin-walled structures, 2012, 57: 49- 61

DOI:10.1016/j.tws.2012.04.005     

ZHOU W B, YAN W J

Refined nonlinear finite element modelling towards ultimate bending moment calculation for concrete composite beams under negative moment

[J]. Thin-Walled Structures, 2017, 116: 201- 211

DOI:10.1016/j.tws.2017.02.011      [本文引用: 1]

CHEN X C, LI Z H, AU F T K, et al

Flexural vibration of prestressed concrete bridges with corrugated steel webs

[J]. International Journal of Structural Stability and Dynamics, 2017, 17 (02): 1750023

DOI:10.1142/S0219455417500237      [本文引用: 1]

MO Y L, JENG C H, KRAWINKLER H

Experimental and analytical studies of innovative prestressed concrete box-girder bridges

[J]. Materials and Structures, 2003, 36 (2): 99- 107

DOI:10.1007/BF02479523      [本文引用: 1]

韦忠瑄, 孙鹰, 沈庆, 等

波形钢腹PC组合箱梁的动力特性研究

[J]. 固体力学学报, 2011, (s1): 394- 398

[本文引用: 2]

WEI Zhong-xuan, SUN Ying, SHEN Qing, et al

Study on dynamic properties of the prestressed concrete box-girder with corrugated steel webs

[J]. Chinese Journal of Solid Mechanics, 2011, (s1): 394- 398

[本文引用: 2]

CARRERA E

Historical review of Zig-zag theories for multilayered plates and shells

[J]. Applied Mechanics Reviews, 2003, 56 (3): 287- 308

DOI:10.1115/1.1557614      [本文引用: 1]

AMBARTSUMIAN S A

On a general theory of anisotropic shells

[J]. Journal of Applied Mathematics and Mechanics, 1958, 22 (2): 305- 319

DOI:10.1016/0021-8928(58)90108-4      [本文引用: 1]

REISSNER E

On a certain mixed variational theorem and a proposed application

[J]. International Journal for Numerical Methods in Engineering, 1984, 20 (7): 1366- 1368

DOI:10.1002/(ISSN)1097-0207      [本文引用: 1]

REISSNER E

On a mixed variational theorem and on shear deformable plate theory

[J]. International Journal for Numerical Methods in Engineering, 1986, 23 (2): 193- 198

[本文引用: 1]

MURAKAMI H

Laminated composite plate theory with improved in-plane responses

[J]. Journal of Applied Mechanics, 1986, 53 (3): 661- 666

DOI:10.1115/1.3171828      [本文引用: 2]

XU R Q, WU Y F

Two-dimensional analytical solutions of simply supported composite beams with interlayer slips

[J]. International Journal of Solids and Structures, 2007, 44 (1): 165- 75

DOI:10.1016/j.ijsolstr.2006.04.027      [本文引用: 1]

JOHNSON R P, CAFOLLA J, BERNARD C

Corrugated webs in plate girders for bridges

[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 1997, 122 (2): 157- 164

DOI:10.1680/istbu.1997.29305      [本文引用: 1]

胡海昌. 弹性力学的变分原理及其应用[M]. 北京: 科学出版社, 1981: 423−424.

[本文引用: 1]

XU R Q, WU Y F

Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory

[J]. International Journal of Mechanical Sciences, 2007, 49 (10): 1139- 1155

DOI:10.1016/j.ijmecsci.2007.02.006      [本文引用: 1]

/