Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (2): 348-357    DOI: 10.3785/j.issn.1008-973X.2021.02.015
    
Statistical analysis of fragment shape of rock grain after crushing based on FDEM
Jian ZHOU1(),Gang MA1,*(),Wei ZHOU1,Yong-gang CHENG1,Quan-shui HUANG1,Xue-xing CAO2
1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
2. Huaneng Lancang River Hydropower Inc, Kunming 650214, China
Download: HTML     PDF(2399KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

3D scanning technology was employed to obtain the surface point cloud data of real rock grains and these grains were reconstructed by using digital image processing technology, aiming at the influence of fragment size and shape on the strength and the deformation of crushing rock grain. The combined finite-discrete element method (FDEM) was used to simulate the fracture and fragmentation of single grain under compression of flat plates. The fragment shape was characterized and quantified, and then the relationships between fragment shape and grain shape and size were analyzed by identifying each fragment produced by single grain crushing. The sensitivity analysis of grain finite element mesh density was conducted to accurately describe the stress gradient and damage evolution along the crack tip. Results show that at least 5、6 cohesive interface elements are required in the fracture process zone to reduce the effects of the element size. The overall shape of fragments generated after grain crushing was focused on, while the local undulation and roughness changes of fragment surface caused by fracture were ignored. Although the grains shapes are different, there are some generic features of shape distribution of fragments after crushing. The sensitivity of sphericity, aspect ratio, Domokos shape descriptor, and convexity of fragments to grain shape gradually increases, and no significant correlation was found between the distribution of other shape descriptors and fragment size except sphericity. The sphericity distribution of fragments with different sizes shows that the larger size fragments tend to be more angular.



Key wordsrock grain      single grain crushing      finite-discrete element method (FDEM)      cohesive zone model (CZM)      shape descriptor     
Received: 08 July 2020      Published: 09 March 2021
CLC:  TV 41  
Fund:  国家自然科学基金资助项目(51825905,U1865204);华能集团科技资助项目(HNKJ18-H26)
Corresponding Authors: Gang MA     E-mail: 604036445@qq.com;magang630@whu.edu.cn
Cite this article:

Jian ZHOU,Gang MA,Wei ZHOU,Yong-gang CHENG,Quan-shui HUANG,Xue-xing CAO. Statistical analysis of fragment shape of rock grain after crushing based on FDEM. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 348-357.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.02.015     OR     http://www.zjujournals.com/eng/Y2021/V55/I2/348


基于FDEM的岩石颗粒破碎后碎片形状的统计分析

针对碎片尺寸和形状会影响岩石强度和变形的问题,采用三维扫描技术获得真实岩石颗粒的表面点云数据,然后通过数字图像处理技术重构数字颗粒,利用连续-离散耦合方法(FDEM)模拟单个颗粒在平板压缩下的断裂破碎. 识别颗粒破碎后所产生的碎片,并进行碎片形状的表征和量化,分析碎片形状与颗粒初始形状、碎片尺寸的关系. 为了准确描述裂纹尖端的应力梯度和损伤演化,进行颗粒有限元网格密度的敏感性分析,结果表明,断裂过程区至少需要5、6个界面单元以减弱网格尺寸的影响. 本研究关注颗粒破碎后所产生碎片的整体形态,忽略断裂引起的碎片表面局部起伏和粗糙变化. 尽管所研究颗粒的初始形状存在较大差异,仍发现颗粒破碎后所产生碎片的形状指标分布具有一些共性特征. 碎片的圆度、扁平率、Domokos因子和凸度对颗粒初始形状的敏感性逐渐增强,并且除了圆度外,其他形状指标分布与碎片尺寸之间并未发现显著的相关性. 不同粒径组碎片的圆度分布表明,较大的碎片棱角更明显.


关键词: 岩石颗粒,  单颗粒破碎,  连续-离散耦合方法(FDEM),  内聚力模型,  形状指标 
Fig.1 Angular granite grains
颗粒编号 $L$/mm $I$/mm $S$/mm ${\rm{EI}}$ ${\rm{FI}}$ ${S_{\rm{f}}}$ ${\psi _{{\rm{3D}}}}$ ${C_{\rm{x}}}$
G1 64.725 55.034 35.883 0.850 0.554 3.274 0.847 0.904
G2 73.791 41.169 35.398 0.558 0.480 3.496 0.787 0.862
G3 84.285 54.624 37.843 0.648 0.449 3.507 0.811 0.928
G4 68.353 55.415 46.224 0.811 0.676 3.117 0.796 0.849
G5 62.311 57.968 48.701 0.930 0.782 3.048 0.808 0.858
G6 63.983 46.226 43.552 0.722 0.681 3.135 0.852 0.921
G7 77.504 48.492 37.44 0.626 0.483 3.436 0.800 0.921
G8 62.171 61.087 39.292 0.983 0.632 3.196 0.838 0.895
G9 61.726 58.954 40.825 0.955 0.661 3.150 0.820 0.884
Tab.1 Shape descriptors of angular granite grains
Fig.2 FDEM model of rock grain
Fig.3 Constitutive relations of cohesive interface element
参数 数值 单位
实体单元 $\; \rho$[1, 19, 25] 2 700 ${{{\rm{kg}}} / {{{\rm{m}}^{\rm{3}}}}}$
$E$[1, 19, 25] 40 ${\rm{GPa}}$
$\nu $[1, 19, 25] 0.2 ?
界面单元 ${k_{\rm{n}}}$ 4.8×1013 ${{\rm{N}} / {{{\rm{m}}^{\rm{3}}}}}$
${k_{\rm{s}}}$ 2.0×1013 ${{\rm{N}} / {{{\rm{m}}^{\rm{3}}}}}$
${f_{\rm{t}}}$[19, 25] 均值为11 ${\rm{MPa}}$,方差为0.5的对数正态分布 ${\rm{MPa}}$
${\varphi _i}$[1, 25] 40 (°)
${\varphi _{\rm{f}}}$[1, 25] 30 (°)
$c$[19, 25] $c = { {15{f_t}\left( {1 - {\rm{sin}}\;{\varphi _i} } \right)} / {\left( {2{\rm{cos}}\;{\varphi _i} } \right)} }$ ${\rm{MPa}}$
$ {G}_{{\rm{I}}}$[25] 100 ${{\rm{N}} / {\rm{m}}}$
$ {G}_{{\rm{II}}}$[25] 500 ${{\rm{N}} / {\rm{m}}}$
接触准则 $\;\mu$[1, 25] 0.577 ?
Tab.2 Input parameters used in FDEM model
Fig.4 Schematic diagram of four different meshes of grain
编号 ${l_{\rm{e}}}$/mm ${n_{\rm{n}}}$ ${n_{\rm{e}}}$ $n_{{\rm{CIE}}}^{\min }$
G-M1 5.18 21 476 13 671 4
G-M2 4.49 31 731 21 064 5
G-M3 3.10 91 751 63 761 7
G-M4 2.21 249 662 176 650 9
Tab.3 Four different meshes of grain
Fig.5 Typical load-displacement curve and external work
Fig.6 Box chart of external work in different meshes
Fig.7 Saw-toothed load-displacement curve
Fig.8 Number of fragments and accumulated fraction of broken cohesive interface element
Fig.9 Ten largest fragments after bulk fragmentation
Fig.10 Cumulative fragment size distribution
Fig.11 Probability distribution of Domokos shape descriptor at end of compression
Fig.12 Frequency distribution of aspect and sphericity at end of compression
Fig.13 Cumulative distribution of shape descriptors
Fig.14 Load-displacement curve and number of fragments
Fig.15 Cumulative distribution of four fragments shape descriptors at end of compression
颗粒 ${S_{\rm{f}}}$ ${S / L}$ ${\psi _{{\rm{3D}}}}$ ${C_{\rm{x}}}$
$q$ $a$ $b$ $a$ $b$ $a$ $b$
G1 2.345 0.506 5.248 0.617 12.330 0.828 3.854
G2 1.881 0.503 3.530 0.601 13.200 0.852 2.810
G3 2.402 0.527 4.618 0.604 10.020 0.834 4.289
G4 2.455 0.543 4.213 0.613 10.620 0.811 4.064
G5 2.193 0.518 4.280 0.606 12.730 0.842 4.056
G6 2.292 0.525 4.078 0.609 11.590 0.804 5.400
G7 2.242 0.525 4.300 0.607 9.881 0.809 3.736
G8 2.595 0.557 4.260 0.617 10.990 0.844 4.093
G9 1.907 0.487 4.327 0.596 12.220 0.871 5.366
Tab.4 Fitting parameters of cumulative distribution for different shape descriptors
Fig.16 Cumulative distribution and fitting of four shape descriptors at end of compression
Fig.17 Cumulative distribution and Kruskal - Wallis test for sphericity of fragments of different size groups
Fig.18 Zingg classification chart of different size groups
[1]   MA G, ZHOU W, ZHANG Y D, et al Fractal behavior and shape characteristics of fragments produced by the impact of quasi-brittle spheres[J]. Powder Technology, 2018, 325: 498- 509
doi: 10.1016/j.powtec.2017.11.030
[2]   刘华伟, 刘永健, 谭春林, 等 空间碎片移除的关键技术分析与建议[J]. 航天器工程, 2017, 26 (2): 105- 113
LIU Hua-wei, LIU Yong-jian, TAN Chun-lin, et al Analysis and suggestion on key technology of space debris removal[J]. Spacecraft Engineering, 2017, 26 (2): 105- 113
doi: 10.3969/j.issn.1673-8748.2017.02.015
[3]   井向阳, 杨利福, 马刚, 等 考虑颗粒形状的面板堆石坝振动台模型试验DEM模拟[J]. 振动与冲击, 2018, 37 (24): 99- 105
JING Xiang-yang, YANG Li-fu, MA Gang, et al DEM modeling of shaking table model test for CFRD considering particle shape[J]. Journal of Vibration and Shock, 2018, 37 (24): 99- 105
[4]   陈兴, 马刚, 周伟, 等 无序性对脆性材料冲击破碎的影响[J]. 物理学报, 2018, 67 (14): 219- 228
CHEN Xing, MA Gang, ZHOU Wei, et al Effects of material disorder on impact fragmentation of brittle spheres[J]. Acta Physica Sinica, 2018, 67 (14): 219- 228
[5]   马刚, 周伟, 常晓林, 等 堆石料缩尺效应的细观机制研究[J]. 岩石力学与工程学报, 2012, 31 (12): 2473- 2482
MA Gang, ZHOU Wei, CHANG Xiao-lin, et al Mesoscopic mechanism study of scale effects of rockfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (12): 2473- 2482
doi: 10.3969/j.issn.1000-6915.2012.12.011
[6]   赵晓菊, 凌华, 傅华, 等 级配对堆石料颗粒破碎及力学特性的影响[J]. 水利与建筑工程学报, 2013, 11 (4): 175- 178
ZHAO Xiao-ju, LING Hua, FU Hua, et al Effect of grain size composition on particle breakage and mechanical properties of rockfill materials[J]. Journal of Water Resources and Architectural Engineering, 2013, 11 (4): 175- 178
[7]   邹德高, 田继荣, 刘京茂, 等 堆石料三维形状量化及其对颗粒破碎的影响[J]. 岩土力学, 2018, 39 (10): 3525- 3530
ZOU De-gao, TIAN Ji-rong, LIU Jing-mao, et al Three-dimensional shape of rockfill material and its influence on particle breakage[J]. Rock and Soil Mechanics, 2018, 39 (10): 3525- 3530
[8]   田继荣. 堆石料的颗粒形状特征及颗粒破碎特性试验研究[D]. 大连: 大连理工大学, 2017.
TIAN Ji-rong. Experimental study on the characteristics of particle shape and particle breakage of rockfill material [D]. Dalian: Dalian University of Technology, 2017.
[9]   褚福永, 朱俊高, 翁厚洋, 等 堆石料强度及变形特性缩尺效应试验[J]. 河海大学学报: 自然科学版, 2019, 47 (4): 381- 386
CHU Fu-yong, ZHU Jun-gao, WENG Hou-yang, et al Experimental study of scale effect on strength and deformation characteristics of rockfill materials[J]. Journal of Hohai University: Natural Sciences, 2019, 47 (4): 381- 386
[10]   凌华, 殷宗泽, 朱俊高, 等 堆石料强度的缩尺效应试验研究[J]. 河海大学学报: 自然科学版, 2011, 39 (5): 540- 544
LING Hua, YIN Zong-ze, ZHU Jun-gao, et al Experimental study of scale effect on strength of rockfill materials[J]. Journal of Hohai University: Natural Sciences, 2011, 39 (5): 540- 544
[11]   DOMOKOS G, KUN F, SIPOS A á, et al Universality of fragment shapes[J]. Scientific Reports, 2015, 5 (1): 9147
[12]   ZHENG W B, HU X L, TANNANT D D Shape characterization of fragmented sand grains via X-ray computed tomography imaging[J]. Journal of Engineering, 2020, 20 (3): 04020003
[13]   ALTUHAFI F N, COOP M R Changes to particle characteristics associated with the compression of sands[J]. Géotechnique, 2011, 61 (6): 459- 471
[14]   FONSECA J, O’SULLIVAN C, COOP M R, et al Non-invasive characterization of particle morphology of natural sands[J]. Soils and Foundations, 2012, 52 (4): 712- 722
doi: 10.1016/j.sandf.2012.07.011
[15]   KONG D, FONSECA J Quantification of the morphology of shelly carbonate sands using 3D images[J]. Géotechnique, 2018, 68 (3): 249- 261
[16]   ZHAO B, WANG J, COOP M R, et al An investigation of single sand particle fracture using X-ray micro-tomography[J]. Géotechnique, 2015, 65 (8): 625- 641
[17]   张星. 基于XFEM研究颗粒形态对砂粒压碎行为的影响[D]. 武汉: 华中科技大学, 2017.
ZHANG Xing. Study on the effect of the particle morphology on sand crushing behaviors based on the XFEM [D]. Wuhan: Huazhong University of Science and Technology, 2017.
[18]   CANTOR D, AZéMA E, SORNAY P, et al Three-dimensional bonded-cell model for grain fragmentation[J]. Computational Particle Mechanics, 2017, 4 (4): 441- 450
doi: 10.1007/s40571-016-0129-0
[19]   MA G, ZHOU W, CHANG X L, et al A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method[J]. Granular Matter, 2016, 18 (1): 1- 17
doi: 10.1007/s10035-015-0597-6
[20]   马刚, 周伟, 常晓林, 等 考虑颗粒破碎的堆石体三维随机多面体细观数值模拟[J]. 岩石力学与工程学报, 2011, 30 (8): 1671- 1682
MA Gang, ZHOU Wei, CHANG Xiao-lin, et al Mesoscopic numerical simulation of rockfill considering particle breakage by using 3-D stochastic polyhedrons[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (8): 1671- 1682
[21]   CIL M B, ALSHIBLI K A 3D evolution of sand fracture under 1D compression[J]. Géotechnique, 2014, 64 (5): 351- 364
[22]   OUHBI N, VOIVRET C, PERRIN G, et al 3D particle shape modelling and optimization through proper orthogonal decomposition: application to railway ballast[J]. Granular Matter, 2017, 4: 86
[23]   DUGDALE D S Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8: 100- 104
doi: 10.1016/0022-5096(60)90013-2
[24]   BARENBLATT G I The Mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, (C): 55- 129
[25]   MA G, ZHOU W, REGUEIRO R A, et al Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2017, 308: 388- 397
doi: 10.1016/j.powtec.2016.11.046
[26]   TURON A, DáVILA C G, CAMANHO P P, et al An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics, 2007, 74 (10): 1665- 1682
doi: 10.1016/j.engfracmech.2006.08.025
[27]   袁葳. 基于连续-离散耦合分析方法的岩体破坏过程数值模拟[D]. 武汉: 武汉大学, 2016.
YUAN Wei. Combined finite-discrete element method modeling of the failure process of rock mass [D]. Wuhan: Wuhan University, 2016.
[28]   MUNJIZA A, JOHN N W M Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms[J]. Engineering Fracture Mechanics, 2002, 69 (2): 281- 295
doi: 10.1016/S0013-7944(01)00090-X
[29]   GUO L, XIANG J, LATHAM J P, et al A numerical investigation of mesh sensitivity for a new three-dimensional fracture model within the combined finite-discrete element method[J]. Engineering Fracture Mechanics, 2016, 151: 70- 91
doi: 10.1016/j.engfracmech.2015.11.006
[30]   ?STR?M J A Statistical models of brittle fragmentation[J]. Advances in Physics, 2006, 55 (3/4): 247- 278
[31]   CHEONG Y S, REYNOLDS G K, SALMAN A D, et al Modelling fragment size distribution using two-parameter Weibull equation[J]. International Journal of Mineral Processing, 2004, 74: S227- S237
doi: 10.1016/j.minpro.2004.07.012
[32]   王益栋, 徐永福, 奚悦 岩石单颗粒压缩破碎试验研究[J]. 固体力学学报, 2015, 36 (6): 517- 523
WANG Yi-dong, XU Yong-fu, XI Yue Experimental study on compression and crushing of single rock grain[J]. Chinese Journal of Solid Mechanics, 2015, 36 (6): 517- 523
No related articles found!