Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (1): 189-194    DOI: 10.3785/j.issn.1008-973X.2021.01.022
    
Quick identification of internal resistance components for lithium ion battery with LiFePO4 cathode
Bin PAN1(),Dong DONG2,Dong-pei QIAN2,Shu-qiang NIU1,Shuang-yu LIU2,Yin-zhu JIANG1,*()
1. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Huayun Imformation Technology Limited Company, Hangzhou 310008, China
Download: HTML     PDF(1039KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A resistance identification method was proposed by measuring direct current resistance (DCR) and alternating current (AC) resistance in order to quickly test internal resistance components of lithium ion battery (LIB). The characteristics and time constants of each resistance component were analyzed in a case study of LiFePO4 (LFP) battery based on Bulter-Volmer equation and the second order equivalent circuit model. Since the charge transfer process is fast enough, the resistance corresponding to the instantaneous voltage change in DCR test generally includes Ohmic resistance and charge transfer resistance. Then the charge transfer resistance can be distinguished combined with AC internal resistance test results. Results show that the proposed method with simple operations is effective and reliable. The minimum error of the charge transfer resistance is no larger than 5%.



Key wordslithium ion battery (LIB)      state of health      internal resistance      equivalent circuit      time constant     
Received: 10 June 2020      Published: 27 January 2021
CLC:  TM 912  
Corresponding Authors: Yin-zhu JIANG     E-mail: panbinsp@zju.edu.cn;yzjiang@zju.edu.cn
Cite this article:

Bin PAN,Dong DONG,Dong-pei QIAN,Shu-qiang NIU,Shuang-yu LIU,Yin-zhu JIANG. Quick identification of internal resistance components for lithium ion battery with LiFePO4 cathode. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 189-194.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.01.022     OR     http://www.zjujournals.com/eng/Y2021/V55/I1/189


磷酸铁锂电池内阻分量快速检测方法

为了实现锂离子电池(LIB)内阻分量快速检测,提出通过直流内阻(DCR)测试及交流内阻测试,辨识各内阻分量的方法. 以磷酸铁锂电池为研究对象,分别采用Bulter-Volmer方程和二阶等效电路模型,模拟研究表征界面电荷转移、浓差极化过程等效电路的时间常数. 由于电荷转移速度足够快,采用直流脉冲测试获得的瞬时响应内阻通常由欧姆内阻和电化学极化内阻组成,结合交流内阻测试仪内阻检测结果,可以计算得到电化学极化内阻分量. 实验结果显示,该内阻分量测试方法不仅操作简便且具有较高的可靠性,电化学极化内阻辨识结果与电化学阻抗测试结果的最小误差小于5%.


关键词: 锂离子电池(LIB),  健康状态,  内阻,  等效电路,  时间常数 
Fig.1 Schematic of current and voltage profile in direct current pulse
Fig.2 Corresponding relationship between EIS and internal resistance of lithium ion battery
Fig.3 EIS of cell with different SOC
SOC Ro /mΩ Cct /F Rct /mΩ τ /ms
1 60.09 2.68 20.69 55.45
5/6 59.77 1.51 14.00 21.07
4/6 63.35 1.49 11.50 17.08
3/6 60.82 1.38 13.34 18.40
2/6 60.28 1.38 13.47 18.55
1/6 60.36 1.23 12.67 15.63
0 60.60 2.58 26.70 68.88
Tab.1 EIS parameters of cell with different SOC
Fig.4 Current change in charge transfer process
Fig.5 Equivalent circuit model of lithium ion battery
Fig.6 Measurement results of DCR at different SOC
Fig.7 Fitting results of voltage relaxation process in DCR test
SOC τ1 /s τ2 /s Rd1 /mΩ Rd2 /mΩ Rd /mΩ
1/6 25.18 193.52 24.40 9.74 34.14
2/6 30.97 921.05 23.99 15.12 39.11
3/6 22.74 183.15 21.97 9.66 31.63
4/6 21.86 256.04 25.36 12.21 37.57
5/6 29.12 301.70 31.86 20.68 52.54
Tab.2 Calculation results of concentration polarization resistance by second order RC models
Fig.8 Ohmic resistance obtained by AC resistance tester and EIS
Fig.9 Activation polarization resistance identified by proposed method
[1]   BERECIBAR M Accurate predictions of lithium-ion battery life[J]. Nature, 2019, 568 (7752): 325- 326
doi: 10.1038/d41586-019-01138-1
[2]   SAFARI M, DELACOURT C Aging of a commercial Graphite/LiFePO4 cell [J]. Journal of the Electrochemical Society, 2011, 158 (10): A1123- A1135
doi: 10.1149/1.3614529
[3]   ANDRE D, MEILER M, STEINER K, et al Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation[J]. Journal of Power Source, 2011, 196 (12): 5334- 5341
doi: 10.1016/j.jpowsour.2010.12.102
[4]   PASTOR-FERNANDEZ C, UDDIN K, CHOUCHELAMANE G H, et al A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems[J]. Journal of Power Source, 2017, 360: 301- 318
doi: 10.1016/j.jpowsour.2017.03.042
[5]   SURESH P, SHUKLA A K, MUNICHANDRAIAH N Temperature dependence studies of a. c. impedance of lithium-ion cells[J]. Journal of Applied Electrochemistry, 2002, 32 (3): 267- 273
doi: 10.1023/A:1015565404343
[6]   CUI Y, ZUO P, DU C, et al State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method[J]. Energy, 2018, 144: 647- 656
doi: 10.1016/j.energy.2017.12.033
[7]   QIAN K, HUANG B, RAN A, et al State-of-health (SOH) evaluation on lithium-ion battery by simulating the voltage relaxation curves[J]. Electrochimica Acta, 2019, 303: 183- 191
doi: 10.1016/j.electacta.2019.02.055
[8]   江海, 李革臣, 苏淇桂, 等 基于MSP 430单片机的便携式电池内阻测试仪[J]. 电源技术, 2007, 31 (7): 548- 550
JIANG Hai, LI Ge-chen, SU Qi-gui, et al Portable instrument based on MSP 430 MCU for testing battery internal impedance[J]. Chinese Journal of Power Source, 2007, 31 (7): 548- 550
doi: 10.3969/j.issn.1002-087X.2007.07.012
[9]   XIONG R, LI L L, TIAN J P Towards a smarter battery management system: a critical review on battery state of health monitoring methods[J]. Journal of Power Source, 2018, 405: 18- 29
doi: 10.1016/j.jpowsour.2018.10.019
[10]   ZOU Y, HU X, MA H, et al Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles[J]. Journal of Power Source, 2015, 273: 793- 803
doi: 10.1016/j.jpowsour.2014.09.146
[11]   JIANG Y, JIANG J C, ZHANG C P, et al State of health estimation of second-life LiFePO4 batteries for energy storage applications [J]. Journal of Cleaner Production, 2018, 205: 754- 762
doi: 10.1016/j.jclepro.2018.09.149
[12]   REMMLINGER J, BUCHHOZ M, MEILERM, et al State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation[J]. Journal of Power Source, 2011, 196: 5357- 5363
doi: 10.1016/j.jpowsour.2010.08.035
[13]   徐升荣, 曾洁, 张育华, 等 基于脉冲电流测量锂电池内阻的实验平台设计[J]. 电子测量技术, 2018, 41 (1): 69- 73
XU Sheng-rong, ZENG Jie, ZHANG Yu-hua, et al Design of experimental platform for measuring internal resistance of lithium batteries based on pulse current[J]. Electronic Measurement Technology, 2018, 41 (1): 69- 73
[14]   LIU S, JIANG J, SHI W, et al Butler–Volmer-equation-based electrical model for high-power lithium Titanate batteries used in electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (12): 7557- 7568
doi: 10.1109/TIE.2015.2449776
[15]   凌仕刚, 吴娇杨, 张舒, 等 锂离子电池基础科学问题(ⅫⅠ): 电化学测量方法[J]. 储能科学与技术, 2015, 4 (1): 83- 103
LING Shi-gang, WU Jiao-yang, ZHANG Shu, et al Fundamental scientific aspects of lithium ion batteries(Ⅻ Ⅰ): electrochmical measurement[J]. Energy Storage Science and Technology, 2015, 4 (1): 83- 103
doi: 10.3969/j.issn.2095-4239.2015.01.010
[16]   张彩萍, 姜久春, 张维戈, 等 梯次利用锂离子电池电化学阻抗模型及特性参数分析[J]. 电力系统自动化, 2013, 37 (1): 54- 58
ZHANG Cai-ping, JIANG Jiu-chun, ZHANG Wei-ge, et al Characterization of electromical impedence model and parameters for Li-ion batteries echelon use[J]. Automation of Electric Power Systems, 2013, 37 (1): 54- 58
doi: 10.7500/AEPS201210170
[17]   徐晶, 张彩萍, 汪国秀, 等 梯次利用锂离子电池欧姆内阻测试方法研究[J]. 电源技术, 2015, 39 (2): 252- 256
XU Jing, ZHANG Cai-ping, WANG Guo-xiu, et al Research on testing method of ohmic resistance for Li-ion batteries echelon use[J]. Chinese Journal of Power Source, 2015, 39 (2): 252- 256
doi: 10.3969/j.issn.1002-087X.2015.02.009
[18]   DUBARRY M, LIAW B Y Development of a universal modeling tool for rechargeable lithium batteries[J]. Journal of Power Source, 2007, 174 (2): 856- 860
doi: 10.1016/j.jpowsour.2007.06.157
[19]   LEI P, WANG T, RENGUI LU, et al Development of a voltage relaxation model for rapid open-circuit voltage prediction in lithium-ion batteries[J]. Journal of Power Source, 2014, 253: 412- 418
doi: 10.1016/j.jpowsour.2013.12.083
[1] CHEN Xiao, Chen Heng-Lin, CHEN Guo-zhu. Three-phase four-wire shut active power filter with coupled inductors[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1529-1536.
[2] RAO Lei, JI Chun lei. Triple junction solar cells characteristics under variable temperature and concentration at AM0[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2269-2275.
[3] HUANG Jing, CHEN Zhang-wei, YAO Ying-hao. Study on factors affecting thermal performance of
PCR thermal cycle system by equivalent circuit
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2216-2221.