|
|
Internal defect detection of arc magnets based on optimized variational mode decomposition |
Mao-xia RAN( ),Qin-yuan HUANG*( ),Xin LIU,Hong SONG,Hao WU |
School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong 643000, China |
|
|
Abstract A novel signal analysis method combining variational mode decomposition (VMD), particle swarm optimization (PSO), and random forest (RF) was proposed aiming at the signal processing and feature recognition problems in the vibro-acoustic detection for arc magnet internal defects. A fitness function representing the processing performance of VMD is constructed by both the mode energies and the center frequency difference of adjacent modes, in which two parameters of VMD, including the decomposition number and the penalty factor, are used as the function variables. The parameter optimization of VMD is performed by PSO, which is responsible for searching for the minimum value of the function in the VMD parameter space, and the parameters corresponding to the found minimum value can be regarded as the optimal parameter setting of VMD. The obtained parameters are used to achieve the optimal VMD decomposition of the signal, and the characteristic mode is determined by calculating the energy of modes. The zero-crossing rate, the spectral centroid, and the maximum peak frequency are extracted from the selected mode to jointly reflect the characteristic information of the internal defects of arc magnets. RF classifier is utilized to identify the extracted features to judge the existence of internal defects. Experimental results show that the proposed method can realize accurate and efficient internal defect detection for different types of arc magnets.
|
Received: 26 November 2019
Published: 15 December 2020
|
|
Corresponding Authors:
Qin-yuan HUANG
E-mail: 2362828148@qq.com;qyhuang@suse.edu.cn
|
基于优化变分模态分解的磁瓦内部缺陷检测
针对磁瓦内部缺陷声振检测存在的信号处理和特征识别问题,提出结合变分模态分解(VMD)、粒子群优化(PSO)和随机森林(RF)的信号分析方法. 该方法以模态能量和相邻模态中心频率差值构建代表VMD处理性能的适应度函数,其中以VMD的分解层数和惩罚因子2个参数作为该适应度函数的变量;通过PSO在VMD参数选择空间中搜索该函数的最小值以执行VMD的参数优化,最小值所对应的参数设置即为VMD的最优参数;利用得到的参数实现信号的最优VMD分解并通过计算模态分量的能量来筛选特征模态,从中提取过零率、谱质心和最大峰值频点以联合反映磁瓦内部缺陷的特征信息;经RF分类器对这些特征进行识别进而对内部缺陷的存在情况做出判断. 实验证明所提出的方法能够准确、高效地实现不同类型磁瓦的内部缺陷检测.
关键词:
粒子群优化算法,
变分模态分解,
磁瓦,
声振信号,
内部缺陷
|
|
[1] |
谢罗峰, 徐慧宁, 黄沁元, 等 应用双树复小波包和NCA-LSSVM检测磁瓦内部缺陷[J]. 浙江大学学报: 工学版, 2017, 51 (1): 184- 191 XIE Luo-feng, XU Hui-ning, HUANG Qin-yuan, et al Application of DTCWPT and NCA-LSSVM to inspect internal defects of magnetic tile[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (1): 184- 191
|
|
|
[2] |
XIE L F, YIN M, HUANG Y Q, et al Internal defect inspection in magnetic tile by using acoustic resonance technology[J]. Journal of Sound and Vibration, 2016, 383: 108- 123
doi: 10.1016/j.jsv.2016.07.020
|
|
|
[3] |
吉伯海, 袁周致远, 傅中秋, 等 钢箱梁疲劳裂纹特征超声波检测方法试验研究[J]. 中南大学学报: 自然科学版, 2016, 47 (6): 2023- 2029 JI Bo-hai, YUANZHOU Zhi-yuan, FU Zhong-qiu, et al Fatigue crack features in steel box girder by ultrasonic testing[J]. Journal of Central South University: Science and Technology, 2016, 47 (6): 2023- 2029
|
|
|
[4] |
曹彦鹏, 许宝杯, 何泽威, 等 红外热成像信号处理技术的研究进展[J]. 振动. 测试与诊断, 2018, 38 (2): 219- 227 CAO Yan-peng, XU Bao-bei, HE Ze-wei, et al Research advances in infrared thermography signal processing technology[J]. Journal of Vibration, Measurement and Diagnose, 2018, 38 (2): 219- 227
|
|
|
[5] |
HUANG N E, SHEN Z, LONG S R, et al The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society: A, 1998, 454 (1971): 903- 995
doi: 10.1098/rspa.1998.0193
|
|
|
[6] |
SMITH J S The local mean decomposition and its application to EEG perception date[J]. Journal of the Royal Society interface, 2005, 2 (5): 443- 454
doi: 10.1098/rsif.2005.0058
|
|
|
[7] |
MA J, WU J, WANG X D Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator[J]. ISA Transactions, 2018, 80: 297- 311
doi: 10.1016/j.isatra.2018.05.017
|
|
|
[8] |
DRAGOMIRETSKIY K, ZOSSO D Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62 (3): 531- 544
doi: 10.1109/TSP.2013.2288675
|
|
|
[9] |
张云强, 张培林, 王怀光, 等 基于变分模式分解的滑动轴承摩擦故障特征提取与状态识别[J]. 内燃机工程, 2017, 38 (4): 89- 96 ZHANG Yun-qiang, ZHANG Pei-lin, WANG Huai-guang, et al Feature extraction and state recognition for sliding bearing friction faults based on variational mode decomposition[J]. Chinese Internal Combustion Engine Engineering, 2017, 38 (4): 89- 96
|
|
|
[10] |
LI Y B, LI G Y, WEI Y, et al Health condition identification of planetary gearboxes based on variational mode decomposition and generalized composite multi scale symbolic dynamic entropy[J]. ISA Transactions, 2018, 81: 329- 341
doi: 10.1016/j.isatra.2018.06.001
|
|
|
[11] |
LIU C F, ZHU L, NI C Chatter detection in milling process based on VMD and energy entropy[J]. Mechanical Systems and Signal Processing, 2018, 105: 169- 182
doi: 10.1016/j.ymssp.2017.11.046
|
|
|
[12] |
苟先太, 李昌喜, 金炜东 VMD多尺度熵用于高速列车横向减振器故障诊断[J]. 振动,测试与诊断, 2019, 39 (2): 292- 297 GOU Xian-tai, LI Chang-xi, JIN Wei-dong Fault diagnosis method for high-speed train lateral damper based on variational mode decomposition and multiscale entropy[J]. Journal of Vibrational, Measurement and Diagnosis, 2019, 39 (2): 292- 297
|
|
|
[13] |
ZHANG X, MIAO Q, ZHANG H, et al A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery[J]. Mechanical Systems and Signal Processing, 2018, 108: 58- 72
doi: 10.1016/j.ymssp.2017.11.029
|
|
|
[14] |
JIANG X X, SHEN C Q, SHI J J, et al Initial center frequency-guided VMD for fault diagnosis of rotating machines[J]. Journal of Sound and Vibration, 2018, 435: 36- 55
doi: 10.1016/j.jsv.2018.07.039
|
|
|
[15] |
杨大为, 冯辅周, 赵永东, 等 VMD样本熵特征提取方法及其在行星变速箱故障诊断中的应用[J]. 振动与冲击, 2018, 37 (16): 198- 205 YANG Da-wei, FENG Fu-zhou, ZHAO Yong-dong, et al A VMD sample entropy feature extraction method and its application in planetary gearbox fault diagnosis[J]. Journal of Vibration and Shock, 2018, 37 (16): 198- 205
|
|
|
[16] |
JIANG X X, WANG J, SHI J J, et al A coarse-to-fine decomposing strategy of VMD for extraction of weak repetitive transients in fault diagnosis of rotating machines[J]. Mechanical Systems and Signal Processing, 2019, 116: 668- 692
doi: 10.1016/j.ymssp.2018.07.014
|
|
|
[17] |
唐贵基, 王晓龙 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49 (5): 73- 81 TANG Gui-ji, WANG Xiao-long Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi'an Jiaotong University, 2015, 49 (5): 73- 81
|
|
|
[18] |
蒋丽英, 卢晓东, 王景霖, 等 基于PSO-VMD的齿轮特征参数提取方法研究[J]. 制造技术与机床, 2017, (11): 65- 71 JIANG Li-ying, LU Xiao-dong, WANG Jing-lin, et al Feature parameters extraction method of gear based on PSO-VMD[J]. Manufacturing Technology and Machine Tool, 2017, (11): 65- 71
|
|
|
[19] |
KENNEDY J, EBERHART R. Particle swarm optimization [C]// IEEE International Conference on Neural Network. Perth: [s. n], 2002: 1942-1948.
|
|
|
[20] |
李华, 伍星, 刘韬, 等 变分模态分解和改进的自适应共振技术在轴承故障特征提取中的应用[J]. 振动工程学报, 2018, 31 (4): 718- 726 LI Hua, WU Xing, LIU Tao, et al Application of variational mode decomposition and improved adaptive resonance technology in bearing fault feature extraction[J]. Journal of Vibration Engineering, 2018, 31 (4): 718- 726
|
|
|
[21] |
姚登举, 杨静, 詹晓娟 基于随机森林的特征选择算法[J]. 吉林大学学报: 工学版, 2014, 44 (1): 137- 141 YAO Deng-ju, YANG Jing, ZHAN Xiao-juan Feature selection algorithm based on random forest[J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44 (1): 137- 141
|
|
|
[22] |
HUANG Q Y, YIN Y, YIN G F, et al Automatic classification of magnetic tiles internal defects based on acoustic resonance analysis[J]. Mechanical Systems and Signal Processing, 2015, 60–61: 45- 58
doi: 10.1016/j.ymssp.2015.02.018
|
|
|
[23] |
WANG Z J, HE G F, DU W H, et al Application of parameter optimized variational mode decomposition method in fault diagnosis of gearbox[J]. IEEE, Access, 2019, 7: 44871- 44882
doi: 10.1109/ACCESS.2019.2909300
|
|
|
[24] |
许子非, 岳敏楠, 李春 优化递归变分模态分解及其在非线性信号处理中的应用[J]. 物理学报, 2019, 68 (23): 292- 305 XU Zi-fei, YUE Min-nan, LI Chun Application of the proposed optimized recursive variational mode decomposition in nonlinear decomposition[J]. Acta Physica Sinica, 2019, 68 (23): 292- 305
|
|
|
[25] |
贾亚飞, 朱永利, 王刘旺, 等 基于VMD和多尺度熵的变压器内绝缘局部放电信号特征提取及分类[J]. 电工技术学报, 2016, 31 (19): 208- 217 JIA Ya-fei, ZHU Yong-li, WANG Liu-wang, et al Feature extraction and classification on partial discharge signals of power transformers based on VMD and multiscale entropy[J]. Transactions of China Electrotechnical Society, 2016, 31 (19): 208- 217
|
|
|
[26] |
赵越, 殷鸣, 黄沁元, 等 基于WPT-ANN的磁瓦内部缺陷音频检测[J]. 中国测试, 2015, 41 (6): 81- 85 ZHAO Yue, YIN Ming, HUANG Qin-yuan, et al Acoustic impact testing of magnetic tile internal defects based on wavelet packet transform and artificial neural network[J]. China Measurement and Test, 2015, 41 (6): 81- 85
|
|
|
[27] |
孙慧芳, 龙华, 邵玉斌, 等 基于过零率及频谱的语音音乐分类算法[J]. 云南大学学报: 自然科学版, 2019, 41 (5): 925- 931 SUN Hui-fang, LONG Hua, SHAO Yu-bin, et al Speech music classification algorithm based on zero-crossing rate and spectrum[J]. Journal of Yunnan University: Natural Science Edition, 2019, 41 (5): 925- 931
|
|
|
[28] |
沈飞, 陈超, 徐佳文, 等 谱质心迁移在变工况轴承故障诊断的应用[J]. 仪器仪表学报, 2019, 40 (5): 99- 108 SHEN Fei, CHEN Chao, XU Jia-wen, et al Application of spectral centroid transfer in bearing fault diagnosis under varying working conditions[J]. Chinese Journal of Science Instrument, 2019, 40 (5): 99- 108
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|