Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 909-920    DOI: 10.3785/j.issn.1008-973X.2020.05.008
Civil Engineering, Traffic Engineering     
Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen
Jun LUO1,2(),Xu-dong SHAO1,*(),Jun-hui CAO1,Wei FAN1,Bi-da PEI1
1. College of Civil Engineering, Hunan University, Changsha 410082, China
2. School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
Download: HTML     PDF(1873KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An orthogonal test was accomplished on 40 steel-UHPC composite specimens, in order to study the transverse bending cracking behavior of steel-ultra-high performance concrete (UHPC) lightweight composite deck. Four influence factors were considered, including reinforcement ratio, cover thickness, thickness of UHPC layer, and spacing of studs. Results show that the number of cracks in the unreinforced members is small and the cracks expand rapidly. The reinforcement can increase the cracking stiffness of the specimens and enhance the crack propagation stage, which makes the members exhibit multiple cracking characteristics. For the cracking stress of UHPC, the most significant factor is the reinforcement ratio, followed by the cover thickness and then the spacing of stud shear connectors, whereas the depth of UHPC layers is observed to have limited influence. Reducing the cover thickness can increase the cracking stress greatly when the reinforcement ratio is high. The cracking stress values of the composite plates with thickness of UHPC layer of 45 mm and 60 mm were 18.7~27.8 MPa and 17.2~27.4 MPa, respectively, which is far beyond the engineering requirements of the Humen Bridge. It is too conservative to calculate the cracking load of the steel-UHPC composite structures according to the formulas in the existing code. Calculation methods of reinforcement stress and cracking load were proposed according to the characteristics of dense reinforced steel-UHPC composite structure. The calculated values obtained by the proposed calculation method are in good agreement with those from tests.



Key wordslightweight composite deck      ultra-high performance concrete (UHPC)      flexural performance      orthogonal test      cracking load      reinforcement stress     
Received: 10 January 2019      Published: 05 May 2020
CLC:  U 443  
Corresponding Authors: Xu-dong SHAO     E-mail: luojun@hnu.edu.cn;shaoxd@hnu.edu.cn
Cite this article:

Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.008     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/909


钢-超高性能混凝土组合板开裂荷载正交试验及计算方法

为了研究钢-超高性能混凝土(UHPC)轻型组合桥面结构的横向抗弯开裂性能,综合考虑配筋率、保护层厚度、UHPC层厚度和栓钉间距4个影响因素,对40个钢-UHPC组合板试件进行受弯开裂正交试验. 结果表明,未配筋构件裂缝数量少且裂缝扩展较快,配筋可以提高构件的开裂刚度,加强裂缝扩展阶段,使构件出现多元开裂特性. 配筋率对开裂应力的影响最大,其次是保护层厚度,然后是栓钉间距,UHPC厚度对开裂应力的影响较小. 在配筋率较高时减小保护层厚度,开裂应力提高幅度较大. UHPC厚度为45 mm的组合板的开裂应力为18.7~27.8 MPa,UHPC厚度为60 mm的组合板的开裂应力为17.2~27.4 MPa,远超虎门大桥的工程需求. 根据现有规范公式计算钢-UHPC组合结构开裂荷载偏保守. 根据密集配筋钢-UHPC组合结构特点,提出钢筋应力和开裂荷载计算方法,计算结果和试验实测结果较吻合.


关键词: 轻型组合桥面,  超高性能混凝土(UHPC),  抗弯性能,  正交试验,  开裂荷载,  钢筋应力 
序号 构件名称 设计变量 ρ/%
s/mm h/mm c/mm n
1)注:150、200表示栓钉间距,45、60表示UHPC层厚度,15、25表示纵向钢筋保护层厚度,4、6表示纵向钢筋数量.
1 S150-451) 150 45 ? ? 0.0
2 S200-45 200 45 ? ? 0.0
3 S150-60 150 60 ? ? 0.0
4 S200-60 200 60 ? ? 0.0
5 S150-45-15-4 150 45 15 4 3.5
6 S150-45-25-4 150 45 25 4 3.5
7 S200-45-15-4 200 45 15 4 3.5
8 S200-45-25-4 200 45 25 4 3.5
9 S150-45-15-6 150 45 15 6 5.2
10 S150-45-25-6 150 45 25 6 5.2
11 S200-45-15-6 200 45 15 6 5.2
12 S200-45-25-6 200 45 25 6 5.2
13 S150-60-15-4 150 60 15 4 2.6
14 S150-60-25-4 150 60 25 4 2.6
15 S200-60-15-4 200 60 15 4 2.6
16 S200-60-25-4 200 60 25 4 2.6
17 S150-60-15-6 150 60 15 6 3.9
18 S150-60-25-6 150 60 25 6 3.9
19 S200-60-15-6 200 60 15 6 3.9
20 S200-60-25-6 200 60 25 6 3.9
Tab.1 Design parameters of steel-UHPC composite specimens
Fig.1 Schematic diagram of reinforced specimens
Fig.2 Plane diagram of reinforcement strain gauge
Fig.3 Main fabrication procedures of specimens
Fig.4 Load diagram of steel -UHPC composite plate
Fig.5 Test loading diagram of steel-UHPC composite plate
Fig.6 Load-displacement curve of steel-UHPC composite plates
Fig.7 Crack distribution diagram of reinforced components in yield stage
Fig.8 Distribution of cracks in unreinforced components
Fig.9 Influence of main parameters on load-deflection curve of reinforced components
构件名称 Fcr/kN σcr/MPa 构件名称 Fcr/kN σcr/MPa
S150-45 15.9 16.0 S200-45-25-4 19.0 18.7
S200-45 17.5 17.6 S200-45-25-6 20.2 18.9
S150-60 25.5 16.1 S150-60-15-4 37.2 21.0
S200-60 28.4 17.9 S150-60-15-6 51.2 27.4
S150-45-15-4 22.2 20.2 S150-60-25-4 31.7 19.1
S150-45-15-6 30.2 27.8 S150-60-25-6 35.6 20.9
S150-45-25-4 19.6 19.6 S200-60-15-4 35.1 19.8
S150-45-25-6 20.5 19.9 S200-60-15-6 49.1 26.4
S200-45-15-4 24.3 22.2 S200-60-25-4 28.7 17.2
S200-45-15-6 29.0 25.3 S200-60-25-6 34.6 20.3
Tab.2 Calculation results of cracking stress of specimens
Fig.10 Cross section conversion diagram
Fig.11 Influence of reinforcement ratio to cracking stress
Fig.12 Influence of cover thickness to cracking stress
Fig.13 Influence of stud spacing to cracking stress
Fig.14 Influence of thickness of UHPC layer to cracking stress
构件名称 Ftest FCECS Fcal $\dfrac{{F_{\rm{CECS}}}}{F_{{\rm{test}}}} $ $\dfrac{{F_{\rm{test}}}}{F_{{\rm{cal}}}} $
S150-45-15-4 22.2 12.7 25.3 0.57 0.88
S150-45-15-6 30.2 17.1 29.1 0.57 1.04
S150-45-25-4 19.6 4.5 19.7 0.23 0.99
S150-45-25-6 20.5 6.0 20.8 0.29 0.99
S200-45-15-4 24.3 12.7 25.3 0.52 0.96
S200-45-15-6 29.0 17.1 29.1 0.59 1.00
S200-45-25-4 19.0 4.5 19.7 0.24 0.96
S200-45-25-6 20.2 6.0 20.8 0.30 0.97
S150-60-15-4 37.2 22.8 41.8 0.61 0.89
S150-60-15-6 51.2 31.9 48.1 0.62 1.06
S150-60-25-4 31.7 12.1 33.4 0.38 0.95
S150-60-25-6 35.6 15.6 36.0 0.44 0.99
S200-60-15-4 35.1 22.8 41.8 0.65 0.84
S200-60-15-6 49.1 31.9 48.1 0.65 1.02
S200-60-25-4 28.7 12.1 33.4 0.42 0.86
S200-60-25-6 34.6 15.6 36.0 0.45 0.96
平均值 ? ? ? 0.47 0.96
Tab.3 Calculated values of cracking load kN
Fig.15 Steel stress calculation diagram of steel-UHPC composite plate
Fig.16 Steel stress of part components
构件 试验值 计算值 计算值/试验值
A1-17.5 7.4 8.3 1.12
A2-17.5 8.8 9.4 1.07
A3-17.5 10.2 10.7 1.05
A1-10 9.7 10.3 1.06
A2-10 12.3 13.0 1.06
B4-15 31.4 28.3 0.90
B4-22 22.6 23.1 1.02
B6-22 24.7 25.4 1.03
C1-15 8.3 6.9 0.83
C3-15 8.7 7.9 0.90
C5-15 11.5 9.1 0.79
Tab.4 Test values of cracking load in reference[10, 21-22] and calculated values kN
[1]   YOO D Y, BANTHIA N Mechanical properties of ultra- high-performance fiber-reinforced concrete: a review[J]. Cement and Concrete Composites, 2016, 73: 267- 280
doi: 10.1016/j.cemconcomp.2016.08.001
[2]   ABBAS S, NEHDI M L, SALEEM M A Ultra-high performance concrete: mechanical performance, durability, sustainability and implementation challenges[J]. International Journal of Concrete Structures and Materials, 2016, 10 (3): 271- 295
doi: 10.1007/s40069-016-0157-4
[3]   邵旭东, 胡建华. 钢-超高性能混凝土轻型组合桥梁结构[M]. 北京: 人民交通出版社, 2015.
[4]   邵旭东, 曹君辉, 易笃涛, 等 正交异性钢板-薄层RPC组合桥面基本性能研究[J]. 中国公路学报, 2012, 25 (2): 40- 45
SHAO Xu-dong, CAO Jun-hui, YI Du-tao, et al Research on basic performance of composite bridge deck system with orthotropic steel deck and thin RPC layer[J]. China Journal of Highway and Transport, 2012, 25 (2): 40- 45
doi: 10.3969/j.issn.1001-7372.2012.02.007
[5]   SHAO X D, YI D T, HUANG Z Y, et al Basic performance of the composite deck system composed of orthotropic steel deck and ultra-thin RPC layer[J]. Journal of Bridge Engineering, 2013, 18 (5): 417- 428
doi: 10.1061/(ASCE)BE.1943-5592.0000348
[6]   ZHANG S H, SHAO X D, CAO J H, et al Fatigue performance of a lightweight composite bridge deck with open ribs[J]. Journal of Bridge Engineering, 2016, 21 (7): 04016039
doi: 10.1061/(ASCE)BE.1943-5592.0000905
[7]   CAO J H, SHAO X D, DENG L, et al Static and fatigue behavior of short-headed studs embedded in a thin ultrahigh-performance concrete layer[J]. Journal of Bridge Engineering, 2017, 22 (5): 04017005
doi: 10.1061/(ASCE)BE.1943-5592.0001031
[8]   SHAO X D, CAO J H Fatigue assessment of steel-UHPC lightweight composite deck based on multiscale FE analysis: case study[J]. Journal of Bridge Engineering, 2018, 23 (1): 05017015
doi: 10.1061/(ASCE)BE.1943-5592.0001146
[9]   吴冲. 现代钢桥[M]. 北京: 人民交通出社, 2006.
[10]   邵旭东, 张哲, 刘梦麟, 等 正交异性钢-RPC组合桥面板弯拉强度的试验研究[J]. 湖南大学学报, 2012, 39 (10): 7- 13
SHAO Xu-dong, ZHANG Zhe, LIU Meng-lin, et al Research on bending tensile strength for composite bridge deck system composed of orthotropic steel deck and thin RPC topping[J]. Journal of Hunan University, 2012, 39 (10): 7- 13
[11]   KWAHK I, LEE J, KIM J, et al Evaluation of the crack width of the ultra high performance concrete (K-UHPC) structures[J]. Journal of the Korean Society of Safety, 2012, 27 (6): 99- 108
[12]   邓宗才, 王义超, 肖锐, 等 高强钢筋UHPC梁抗弯性能试验与理论分析[J]. 应用基础与工程科学学报, 2015, 23 (1): 68- 78
DENG Zong-cai, WANG Yi-chao, XIAO Rui, et al Experimental study and analysis on flexural property of UHPC beams with high strength steel[J]. Journal of Basic Science and Engineering, 2015, 23 (1): 68- 78
[13]   RAHDAR H A, GHALEHNOVI M Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar[J]. Journal of Computers and Concrete, 2016, 18 (1): 139- 154
doi: 10.12989/cac.2016.18.1.139
[14]   徐海宾, 邓宗才 UHPC梁开裂和裂缝试验[J]. 哈尔滨工业大学学报, 2014, 46 (4): 87- 92
XU Hai-bin, DENG Zong-cai Cracking moment and crack width of ultra-high performance concrete beams[J]. Journal of Harbin Institute of Technology, 2014, 46 (4): 87- 92
doi: 10.11918/j.issn.0367-6234.2014.04.015
[15]   金凌志, 何培, 祁凯能, 等 高强钢筋活性粉末混凝土简支梁斜裂缝宽度试验研究[J]. 武汉大学学报, 2014, 47 (5): 665- 670
JIN Ling-zhi, HE Pei, QI Kai-neng, et al Experimental study of diagonal crack width of high strength reinforced reactive powder concrete simply-supported beam[J]. Journal of Wuhan University, 2014, 47 (5): 665- 670
[16]   PREM P R, MURTHY A R Acoustic emission and flexural behavior of RC beams strengthened with UHPC overlay[J]. Construction and Building Materials, 2016, 123: 481- 492
doi: 10.1016/j.conbuildmat.2016.07.033
[17]   TANARSLAN H M, ALVER N, JAHANGIRI R, et al Flexural strengthening of RC beams using UHPFRC laminates: bonding techniques and rebar addition[J]. Construction and Building Materials, 2017, 155: 45- 55
doi: 10.1016/j.conbuildmat.2017.08.056
[18]   CHOI W, CHOI Y, YOO S W, Flexural design and analysis of composite beams with inverted-T steel girder with ultrahigh performance concrete slab [J/OL]. Advances in Civil Engineering, 2018: 1356027 [2019-01-11]. https://doi.org/10.1155/2018/1356027.
[19]   YOO S W, CHOO J F Evaluation of the flexural behavior of composite beam with inverted-T steel girder and steel fiber reinforced ultra high performance concrete slab[J]. Engineering Structures, 2016, 118: 1- 15
doi: 10.1016/j.engstruct.2016.03.052
[20]   DIENG L, MARCHAND P, GOMES F, et al Use of UHPFRC overlay to reduce stresses in orthotropic steel decks[J]. Journal of Constructional Steel Research, 2013, 89: 30- 41
doi: 10.1016/j.jcsr.2013.06.006
[21]   李文光, 邵旭东, 方恒, 等 钢 -UHPC组合板受弯性能的试验研究[J]. 土木工程学报, 2015, 48 (11): 93- 102
LI Wen-guang, SHAO Xu-dong, FANG Heng, et al Experimental study on flexural behavior of steel-UHPC composite slabs[J]. China Civil Engineering Journal, 2015, 48 (11): 93- 102
[22]   邵旭东, 张松涛, 张良, 等 钢 -超薄UHPC层轻型组合桥面性能研究[J]. 重庆交通大学学报, 2016, 35 (1): 22- 27
SHAO Xu-dong, ZHANG Song-tao, ZHANG Liang, et al Performance of light-type composite bridge deck system with steel and ultra-thin UHPC layer[J]. Journal of Chongqing Jiaotong University, 2016, 35 (1): 22- 27
[23]   AFNOR. Ultra-high performance fibre-reinforced concrete [S]. France: Association Francaise de Normalisation, 2016.
[24]   RAFIEE J. Computer modeling and investgation on the steel corrosion in cracked ultra high performance concrete [D]. Kassel: Kassel University, 2012.
[25]   丁楠, 邵旭东 轻型组合桥面板的疲劳性能研究[J]. 土木工程学报, 2015, 48 (1): 74- 81
DING Nan, SHAO Xu-dong Research on fatigue performance of lightweight composite bridge deck[J]. China Civil Engineering Journal, 2015, 48 (1): 74- 81
[26]   中华人民共和国交通运输部. 公路桥涵设计通用规范: JTG D60-2015 [S]. 北京: 人民交通出版社, 2015.
[27]   中华人民共和国交通部. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG D62-2004 [S]. 北京: 人民交通出版社, 2004.
[28]   中国工程建设标准化协会. 纤维混凝土结构技术规程: CECS38-2004 [S]. 北京: 中国计划出版社, 2004.
[29]   中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB50010-2010 [S]. 北京: 中国建筑工业出版社, 2011.
[30]   张哲, 邵旭东, 李文光, 等 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28 (8): 50- 58
ZHANG Zhe, SHAO Xu-dong, LI Wen-guang, et al Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28 (8): 50- 58
doi: 10.3969/j.issn.1001-7372.2015.08.007
[1] ZHANG Zheng-xuan, CHEN Gang, XU Quan-biao, GONG Shun-feng, XIAO Zhi-bin, LIU Cheng-bin. Experimental study on flexural and shear performance of prestressed steel strand ultra-high strength concrete H-type piles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 31-39.
[2] FU Xiao-yun, LEI Lei, YANG Gang, LI Bao-ren. Wing parameter configuration and steady motion analysis of water-jet hybrid glider[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1499-1508.
[3] LIAO Zi-nan, SHAO Xu-dong, QIAO Qiu-heng, CAO Jun-hui, LIU Xiang-ning. Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1954-1963.
[4] XU Quan-biao, CHEN Gang, HE Jing-feng, GONG Shun-feng, XIAO Zhi-bin. Flexural performance experiment of connection joint for composite reinforcement concrete prefabricated square piles[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1300-1308.
[5] XIE Lu xin, HU Jin bing, WU Jian feng, WANG Jun. Virtual experimental research on tail-breaking mechanism of  whole-stalk sugarcane harvester[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1662-1670.
[6] XU Quan biao, CHEN Gang, HE Jing feng, GONG Shun feng. Flexural performance experiment of composite reinforcement[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1768-1776.
[7] PEI Xiao peng,WANG Guo lin,ZhOU Hai chao,ZhAO Fan. Influence of tread design parameters on tire vibration noise[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 871-878.