Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (2): 416-424    DOI: 10.3785/j.issn.1008-973X.2020.02.024
Aerospace Technology     
Experimental and numerical investigations of ignition process in annular combustor
Yi-fan XIA1(),Dong-mei ZHAO2,Hai-wen GE3,Qi-zhao LIN2,Yao ZHENG1,Gao-feng WANG1,*()
1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
2. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
3. Department of Mechanical Engineering, Texas Tech University, Lubbock 79409, USA
Download: HTML     PDF(1575KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The ignition process of an annular combustor with multiple injectors was investigated by experiments and simulations. In the numerical simulation, the unsteady Reynolds average Navier-Stokes (RANS) method, adaptive mesh refinement (AMR) and University of California, San Diego (UCSD) detailed chemistry were applied. The simulation predicted light-round process, flame merging and heat release rate were compared with the experimental results. The numerical results showed an overall agreement of the light-round process with the experimental results recorded by high speed camera. The simulated flame surface area and integrated heat release rate were in agreement with the profile of integrated light intensity of experiment. The arc-like flame, azimuthal propagation pattern of light-round and asymmetry of the flame merging were observed both in simulations and experiments. The simulation method is reliable for predicting the flame propagation in the annular combustor. Compared to experiments, the numerical method is capable of revealing more details of flow field and flame propagation, but the numerical results depends on the validation of experiments.



Key wordsannular combustor      light-round ignition      ignition test      unsteady Reynolds average Navier-Stokes      adaptive mesh      detailed chemistry     
Received: 28 January 2019      Published: 10 March 2020
CLC:  V 23  
Corresponding Authors: Gao-feng WANG     E-mail: xiayifan@zju.edu.cn;gfwang@zju.edu.cn
Cite this article:

Yi-fan XIA,Dong-mei ZHAO,Hai-wen GE,Qi-zhao LIN,Yao ZHENG,Gao-feng WANG. Experimental and numerical investigations of ignition process in annular combustor. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 416-424.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.02.024     OR     http://www.zjujournals.com/eng/Y2020/V54/I2/416


环形燃烧室点火过程的实验与数值研究

对多喷嘴旋流环形燃烧室的周向点火过程进行实验研究和数值模拟. 数值方法采用非稳态雷诺平均(RANS)、自适应网格加密(AMR)方法和加州大学圣迭戈分校(UCSD)详细反应机理. 将数值模拟所得的火焰周向联焰、合焰和放热率与实验结果进行对比. 结果表明,数值计算所得的火焰周向传播过程与实验中高速相机记录的火焰传播过程整体相符. 计算所得的火焰面积和放热率变化与实验所得的积分亮度变化曲线较符合. 实验和数值结果均表明,在点火过程中存在拱形火焰、周向传播模式以及不对称的火焰汇合. 所采用的数值方法能够基本模拟环形燃烧室中的火焰传播过程. 与实验相比,数值计算能揭示更多流场和火焰传播的细节,但是数值结果依赖于实验的标定.


关键词: 环形燃烧室,  周向点火,  点火实验,  非稳态雷诺平均,  自适应网格,  详细机理 
Fig.1 Schematic of annular combustor experimental device
Fig.2 High-speed camera and configuration of annular combustor
Fig.3 Figures of swirling flames taken by high speed camera
工况 qV1 /(L?min?1) qV2 /(L?min?1) Φ P/kW Ub /(m?s?1)
FFSL 10-357 10 357 0.67 15.5 4.87
Tab.1 Working conditions of ignition experiments
Fig.4 Laminar flame structure and distribution of major components
Fig.5 Annular combustor and flame on a slice
Fig.6 AMR mesh of swirling and propagating flames
加密等级 Δx0 /mm Δx /mm
1 2 1.000
2 2 0.500
3 2 0.250
4 2 0.125
Tab.2 Grid sizes for different refined scales
Fig.7 Flame patterns at different moments during light-round process
Fig.8 Integrated light intensity varying with ignition time
Fig.9 Numerical results of light-round process
Fig.10 Comparison between experiment and simulation results of non-dimensional heat release rate
Fig.11 Asymmetry of flame merging
Fig.12 Flow streamlines at different slices of annular combustor
Fig.13 Schematic diagram of flame front propagation
[1]   LEFEBVRE A H, BALLAL D R. Gas turbine combustion: alternative fuels and emissions [M]. New York: CRC press, 2010.
[2]   BOURGOUIN J F, DUROX D, SCHULLER T, et al Ignition dynamics of an annular combustor equipped with multiple swirling injectors[J]. Combustion and Flame, 2013, 160 (8): 1398- 1413
doi: 10.1016/j.combustflame.2013.02.014
[3]   LINASSIER G, VIGUIER C, VERDIER H, et al. Experimental investigations of the ignition performances on a multi-sector combustor under high altitude conditions [C]// The 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville: AIAA, 2012: 934.
[4]   NEOPHYTOU A, CUENOT B, DUCHAINE P Large-eddy simulation of ignition and flame propagation in a trisector combustor[J]. Journal of Propulsion and Power, 2015, 32 (2): 345- 359
[5]   BARRE D, ESCLAPEZ L, CORDIER M, et al Flame propagation in aeronautical swirled multi-burners: experimental and numerical investigation[J]. Combustion and Flame, 2014, 161 (9): 2387- 2405
doi: 10.1016/j.combustflame.2014.02.006
[6]   CORDIER M, VANDEL A, RENOU B, et al. Experimental and numerical analysis of an ignition sequence in a multiple-injectors burner [C]// ASME Turbo Expo. San Antonio: ASME, 2013: 1182.
[7]   PRIEUR K, DUROX D, BEAUNIER J, et al Ignition dynamics in an annular combustor for liquid spray and premixed gaseous injection[J]. Proceedings of the Combustion Institute, 2017, 36 (3): 3717- 3724
doi: 10.1016/j.proci.2016.08.008
[8]   BACH E, KARIUKI J, DAWSON J, et al. Spark ignition of single bluff-body premixed flames and annular combustors [C]// The 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Grapevine: AIAA, 2013: 1182.
[9]   MACHOVER E, MASTORAKOS E Experimental investigation on spark ignition of annular premixed combustors[J]. Combustion and Flame, 2017, 178: 148- 157
doi: 10.1016/j.combustflame.2017.01.013
[10]   MACHOVER E, MASTORAKOS E Spark ignition of annular non-premixed combustors[J]. Experimental Thermal and Fluid Science, 2016, 73: 64- 70
doi: 10.1016/j.expthermflusci.2015.09.008
[11]   MACHOVER E, MASTORAKOS E Numerical investigation of the stochastic behavior of light-round in annular non-premixed combustors[J]. Combustion Science and Technology, 2017, 189 (9): 1467- 1485
doi: 10.1080/00102202.2017.1305366
[12]   令狐昌鸿, 王高峰, 钟亮, 等 环形旋流燃烧室模型点火过程的实验[J]. 航空动力学报, 2018, 33 (7): 1767- 1778
LINGHU Chang-hong, WANG Gao-feng, ZHONG Liang, et al Experiment on ignition process in annular swirling combustor model[J]. Journal of Aerospace Power, 2018, 33 (7): 1767- 1778
[13]   叶沉然, 王高峰, 马承飚, 等 斜喷环流环形燃烧室点火实验研究[J]. 工程热物理学报, 2018, 39 (11): 2549- 2558
YE Chen-ran, WANG Gao-feng, MA Cheng-biao, et al Experimental invesitgation of ignition process in an annular combustor with circumferential flow via oblique injection[J]. Journal of Engineering Thermophysics, 2018, 39 (11): 2549- 2558
[14]   YE C, WANG G, FANG Y, et al. Ignition dynamics in an annular combustor with gyratory flow motion [C]// ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Oslo: ASME, 2018: 76624.
[15]   BOILEAU M, STAFFELBACH G, CUENOT B, et al LES of an ignition sequence in a gas turbine engine[J]. Combustion and Flame, 2008, 154 (1/2): 2- 22
[16]   PHILIP M, BOILEAU M, VICQUELIN R, et al Ignition sequence of an annular multi-injector combustor[J]. Physics of Fluids, 2014, 26 (9): 091106
doi: 10.1063/1.4893452
[17]   PHILIP M, BOILEAU M, VICQUELIN R, et al Large eddy simulations of the ignition sequence of an annular multiple-injector combustor[J]. Proceedings of the Combustion Institute, 2015, 35 (3): 3159- 3166
doi: 10.1016/j.proci.2014.07.008
[18]   PHILIP M, BOILEAU M, VICQUELIN R, et al Simulation of the ignition process in an annular multiple-injector combustor and comparison with experiments[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137 (3): 031501
doi: 10.1115/1.4028265
[19]   LANCIEN T, PRIEUR K, DUROX D, et al Large eddy simulation of light-round in an annular combustor with liquid spray injection and comparison with experiments[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140 (2): 021504
doi: 10.1115/1.4037827
[20]   LANCIEN T, PRIEUR K, DUROX D, et al Leading point behavior during the ignition of an annular combustor with liquid n-heptane injectors[J]. Proceedings of the Combustion Institute, 2019, 37 (4): 5021- 5029
doi: 10.1016/j.proci.2018.05.160
[21]   GICQUEL L Y, STAFFELBACH G, POINSOT T Large eddy simulations of gaseous flames in gas turbine combustion chambers[J]. Progress in Energy and Combustion Science, 2012, 38 (6): 782- 817
doi: 10.1016/j.pecs.2012.04.004
[22]   DRENNAN S A, KUMAR G. Demonstration of an automatic meshing approach for simulation of a liquid fueled gas turbine with detailed chemistry [C]// The AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland: AIAA, 2006: 3628.
[23]   KUMAR G, DRENNAN S A. A CFD investigation of multiple burner ignition and flame propagation with detailed chemistry and automatic meshing [C]// AIAA Populsion and Energy Forum. Salt Lake City: AIAA, 2016: 4561.
[24]   LINKE-DIESINGER A. Systems of commercial turbofan engines [M]. Berlin: Springer-Verlag, 2008.
[25]   YAKHOT V, ORSZAG S A Renormalization group analysis of turbulence. I: basic theory[J]. Journal of Scientific Computing, 1986, 1 (1): 3- 51
doi: 10.1007/BF01061452
[26]   POINSOT T, VEYNANTE D. Theoretical and numerical combustion [M]. Philadelphia: RT Edwards, Inc., 2005.
[27]   UCSD. Chemical-kinetic mechanisms for combustion applications, san diego mechanism web page [EB/OL]. [2019-11-30]. http://combustion.ucsd.edu.
[28]   RICHARDS K, SENECAL P, POMRANING E. Converge manual (V2.4) [M]. Madison: Convergent Science, 2017.
[29]   ISSA R, AHMADI-BEFRUI B, BESHAY K, et al Solution of the implicitly discretised reacting flow equations by operator-splitting[J]. Journal of Computational Physics, 1991, 93 (2): 388- 410
doi: 10.1016/0021-9991(91)90191-M
[1] Feng CHENG,Dong ZHANG,Shuo TANG. Aerodynamics/propulsion coupled modeling and analysis of hypersonic vehicle within wide speed range[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 1006-1018.
[2] Yan-zhong WANG,Kai YANG,Rong-hua QI,Yan-yan CHEN,Fei LI,Hao GAO. Ultra-high cycle fatigue life prediction method for aero engine impeller[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 621-627.
[3] NING Feng ping, YAO Jian tao, SUN Kun, MA Ming zhen,ZHAO Yong sheng.
Effect of multi-factor coupling on thermal properties of space bearing
[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 129-136.