Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 40-47    DOI: 10.3785/j.issn.1008-973X.2020.01.005
Mechanical Engineering     
Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM
Fang-fang TAN1(),Jun-jiang ZHU1,Tian-hong YAN1,*(),Zhi-qiang GAO2,Ling-song HE2
1. College of Mechanical and Electronic Engineering, China Jiliang University, Hangzhou 310018, China
2. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Download: HTML     PDF(1170KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The problem of multi-parameter simultaneous optimization and large error of empirical tuning should be solved in the vibration signal feature recognition and surface roughness prediction processes in order to improve the on-line prediction accuracy of workpiece surface roughness. The optimization method of signal feature recognition and surface roughness prediction modeling was proposed based on genetic algorithm (GA). GA was used to choose mother wavelet and feature quantities when signal features of milling 6061 aluminum alloy was recognized based on wavelet packet transform (WPT). The number of neurons in hidden layer was selected by GA when signal features and surface roughness were used to train extreme learning machine (ELM). The prediction modeling which has been trained was tested. The experimental results show that the three types of parameters for signal recognition and surface roughness prediction were simultaneously optimized by GA. GA-WPT-ELM not only obtains the best features of signal and the higher prediction accuracy of surface roughness, but also reduces analytical-computational cost in the modeling processes.



Key wordson-line vibration signal      genetic algorithm (GA)      wavelet packet transform      extreme learning machine (ELM)      surface roughness predicting     
Received: 03 December 2018      Published: 05 January 2020
CLC:  TP 18  
  TH 113  
Corresponding Authors: Tian-hong YAN     E-mail: tff097443@yeah.net;thyan@163.com
Cite this article:

Fang-fang TAN,Jun-jiang ZHU,Tian-hong YAN,Zhi-qiang GAO,Ling-song HE. Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 40-47.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.005     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/40


基于GA-WPT-ELM的6061铝合金表面粗糙度预测

为了提高工件表面粗糙度预测的准确性,针对振动信号特征识别和表面粗糙度预测建模时多个参数难以同步优化和人工经验调优误差较大的问题,提出基于遗传算法(GA)的信号特征识别和表面粗糙度预测的优化算法. 对采集的6061铝合金铣削振动信号进行小波包变换(WPT)和多个特征提取,利用GA优化WPT母小波和特征向量;将信号特征向量和表面粗糙度分别作为极限学习机(ELM)的输入和输出,对预测模型训练的同时,利用GA优化ELM隐含层的神经元个数;对训练好的预测模型进行测试. 实验结果表明,通过GA对振动信号识别和表面粗糙度预测的3类参数同步优化,获得了最佳的信号特征和较高的表面粗糙度预测精度,节省了建模分析计算成本.


关键词: 在线振动信号,  遗传算法(GA),  小波包变换,  极限学习机(ELM),  表面粗糙度预测 
Fig.1 Structure diagram of WPT
Fig.2 Network structure diagram of extreme learning machine
Fig.3 Optimization method flowchart of feature extraction
Fig.4 Signal acquisition and analysis system of milling vibration
n/(103 r·min?1 f/(103 mm·min?1 d/mm
6 1 1.0
9 1.65 0.7
12 2.3 0.5
15 3 0.3
18
Tab.1 Milling parameters
Fig.5 Spindle milling experiment and sensor measurement
类型 族系 Ψ
正交 Daubechies db2,db3,db4,db5,db6,db7,db8,db9,
db10,db11,db12,db13,db14
正交 Haar Haar
正交 Coiflets coif1,coif2,coif3,coif4,coif5
正交 Symmlets sym2,sym3,sym4,sym5,sym6,sym7, sym8
双正交 Biorthogonal bior1.3,bior1.5,bior2.2,bior2.4,bior2.6,
bior2.8,bior3.1,bior3.3,bior3.5,bior3.7,
bior3.9,bior4.4,bior5.5,bior6.8
Tab.2 Mother wavelets of wavelet packet decomposition
特征 v 特征 v
均值 $J_{_{Gj}}^{{\lambda ^i}}$ 偏态 $P_{_{Gj}}^{{\lambda ^i}}$
标准差 $B_{_{Gj}}^{{\lambda ^i}}$ 峰态 $F_{_{Gj}}^{{\lambda ^i}}$
峰峰值 ${\rm{FF}}_{_{Gj}}^{{\lambda ^i}}$ 能量熵 $H_{_{Gj}}^{{\lambda ^i}}$
Tab.3 Statistical feature extraction of vibration signals
Fig.6 Optimization results of mother wavelets
Fig.7 Scale function and wavelet function for mother wavelet bior5.5
振动信号组别 Ψ v l σ/%
Gx bior5.5 $H_{G_{x}}^{\rm{DAAAA}}$ 76 88.95
Gx db8 $H_{G_{x}}^{\rm{DAAA}}$ 62 83.46
Gx Haar $P_{G_{x}}^{\rm{DAD}}$ 49 80.53
Gx coif3 $F_{G_{x}}^{\rm{DADAA}}$ 96 80.22
Gy db14 $H_{G_{y}}^{\rm{ADA}}$ 86 83.82
Gy db5 $H_{G_{y}}^{\rm{ADAA}}$ 64 82.22
Gy bior1.5 $H_{G_{y}}^{\rm{AAADA}}$ 31 81.24
Gz db6 $H_{G_{z}}^{\rm{AADAD}}$ 26 80.69
Gz sym6 $H_{G_{z}}^{\rm{DADA}}$ 38 82.92
Tab.4 Training results of GA options algorithm
Fig.8 Optimization curve and individual selection of GA
Fig.9 Fitting curve of surface roughness
组序号 n/(103
r·min?1
f/(103
mm·min?1
d/
mm
$ \hat R_{\rm{a}} $/μm Ra/μm Δe/
μm
1 18 1.65 0.3 0.122 8 0.137 1 0.014 4
2 12 1.65 0.3 0.146 3 0.176 9 0.030 7
3 15 2.3 0.3 0.173 0 0.132 4 ?0.040 6
4 6 1 1.0 0.187 5 0.206 5 0.019 0
5 12 2.3 1.0 0.216 5 0.242 2 0.025 7
6 15 3 1.0 0.262 5 0.242 2 ?0.020 3
7 9 2.3 0.5 0.350 5 0.419 8 0.069 3
8 12 3 0.3 0.356 3 0.367 6 0.011 4
9 9 2.3 0.7 0.396 8 0.347 3 ?0.049 5
10 6 1.65 0.5 0.506 5 0.496 5 ?0.010 0
11 9 3 1.0 0.624 0 0.629 7 0.005 7
12 9 3 0.5 0.694 3 0.700 2 0.005 9
13 6 2.3 1.0 0.772 3 0.770 0 ?0.002 2
14 6 2.3 0.5 0.849 3 0.837 5 ?0.011 8
15 6 3 0.5 0.967 3 0.977 9 0.010 6
Tab.5 Prediction results of surface roughness
比较对象 信号源 样本数 方法 v σ/%
本文研究 振动信号 960 GA-WPT $H_{G_{x}}^{\rm{DAAAA}}$ 88.95
文献[14] 振动信号 360 SSA $a_y^{{\lambda _i}}$ 85.4
文献[13] 振动信号 20 TDA ax, v,f,d 80.0
文献[15] 切削力信号 360 G-WPT $X_{{F_X}}^{\rm{AAAA}}$ 88.1
Tab.6 Comparison of surface roughness prediction results for different methods
[1]   WANG H, TO S, CHAN C Y Investigation on the influence of tool-tip vibration on surface roughness and its representative measurement in ultra-precision diamond turning[J]. International Journal of Machine Tools and Manufacture, 2013, 69 (3): 20- 29
[2]   仲为武, 赵东标, 王希 航空铝合金7050-T7451干式铣削工艺参数对振动信号影响研究[J]. 中国机械工程, 2011, 22 (4): 458- 461
ZHONG Wei-wu, ZHAO Dong-biao, WANG Xi Effects of process parameters on vibration signals in dry milling of aeronautic aluminum alloy 7050-T7451[J]. China Mechanical Engineering, 2011, 22 (4): 458- 461
[3]   王政平, 张锡芳, 张艳娥 表面粗糙度光学测量方法研究进展[J]. 传感器与微系统, 2007, 26 (9): 4- 6
WANG Zheng-ping, ZHANG Xi-fang, ZHANG Yan-e Progress on optical measurement of surface roughness[J]. Transducer and Microsystem Technologies, 2007, 26 (9): 4- 6
doi: 10.3969/j.issn.1000-9787.2007.09.002
[4]   刘晨, 卢荣胜, 陈磊, 等 基于光学法表面粗糙度的测量研究进展[J]. 半导体光电, 2010, 31 (4): 495- 500
LIU Chen, LU Rong-sheng, CHEN Lei, et al Progress of surface roughness measurement based on optical method[J]. Semiconductor Optoelectronics, 2010, 31 (4): 495- 500
[5]   SALGADO D R, ALONSO F J, CAMBERO I, et al In-process surface roughness prediction system using cutting vibrations in turning[J]. The International Journal of Advanced Manufacturing Technology, 2009, 43 (1/2): 40- 51
[6]   LAURO C H, BRANDAO L C, BALDO D, et al Monitoring and processing signal applied in machining processes: a review[J]. Measurement, 2014, 58: 73- 86
doi: 10.1016/j.measurement.2014.08.035
[7]   OZEL T, KARPAT Y, LUíS FIGUEIRA, et al Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts[J]. Journal of Materials Processing Technology, 2007, 189 (1-3): 192- 198
doi: 10.1016/j.jmatprotec.2007.01.021
[8]   HESSAINIA Z, BELBAH A, YALLESE M A, et al On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations[J]. Measurement, 2013, 46 (5): 1671- 1681
doi: 10.1016/j.measurement.2012.12.016
[9]   KIM D S, CHANG I C, KIM S W Microscopic topographical analysis of tool vibration effects on diamond turned optical surfaces[J]. Precision Engineering, 2002, 26 (2): 168- 174
doi: 10.1016/S0141-6359(01)00115-5
[10]   SEGRETO T, KARAM S, SIMEONE A, et al Residual stress assessment in Inconel 718 machining through wavelet sensor signal analysis and sensor fusion pattern recognition[J]. Procedia CIRP, 2013, 9: 103- 108
doi: 10.1016/j.procir.2013.06.176
[11]   迟军, 陈廉清, 杨超珍 基于小波包分析和Elman网络的切削表面粗糙度预测方法[J]. 中国机械工程, 2010, (7): 822- 826
CHI Jun, CHEN Lian-qing, YANG Chao-zhen Research on prediction of cutting surface roughness based on wavelet packet analysis and Elman network[J]. China Mechanical Engineering, 2010, (7): 822- 826
[12]   UPADHYAY V, JAIN P K, MEHTA N K In-process prediction of surface roughness in turning of Ti–6Al–4V alloy using cutting parameters and vibration signals[J]. Measurement, 2013, 46 (1): 154- 160
doi: 10.1016/j.measurement.2012.06.002
[13]   RISBOOD K A, DIXIT U S, SAHASRABUDHE A D Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process[J]. Journal of Materials Processing Tech, 2003, 132 (1): 203- 214
[14]   PLAZA E G, LóPEZ P J N Surface roughness monitoring by singular spectrum analysis of vibration signals[J]. Mechanical Systems and Signal Processing, 2017, 84: 516- 530
doi: 10.1016/j.ymssp.2016.06.039
[15]   PLAZA E G, LóPEZ P J N Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning[J]. Mechanical Systems and Signal Processing, 2018, 98: 634- 651
doi: 10.1016/j.ymssp.2017.05.006
[16]   钟崴, 彭梁, 周永刚, 等 基于小波包分析和支持向量机的锅炉结渣诊断[J]. 浙江大学学报: 工学版, 2016, 50 (8): 1499- 1506
ZHONG Wei, PENG Liang, ZHOU Yong-gang, et al Slagging diagnosis of boiler based on wavvelet packet analysis and support vector machine[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (8): 1499- 1506
[17]   李国宾, 关德林, 李廷举 基于小波包变换和奇异值分解的柴油机振动信号特征提取研究[J]. 振动与冲击, 2011, 30 (8): 149- 152
LI Guo-bin, GUAN De-lin, LI Ting-ju Study on feature extraction of diesel engine vibration signal based on wavelet packet transform and singularity value decomposition[J]. Journal of Vibration and Shock, 2011, 30 (8): 149- 152
doi: 10.3969/j.issn.1000-3835.2011.08.029
[18]   HUANG G B, ZHU Q Y, SIEW C K Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70 (1-3): 489- 501
doi: 10.1016/j.neucom.2005.12.126
[19]   HUANG G B, ZHOU H, DING X, et al Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 2012, 42 (2): 513- 529
doi: 10.1109/TSMCB.2011.2168604
[20]   段斌, 梁军, 费正顺, 等 基于GA-ANN的非线性半参数建模方法[J]. 浙江大学学报: 工学版, 2011, 45 (6): 977- 983
DUAN Bin, LIANG Jun, FEI Zheng-shun, et al Nonlinear semi-parametruc modeling mothed based on GA-ANN[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (6): 977- 983
[21]   刘浩然, 赵翠香, 李轩, 等 一种基于改进遗传算法的神经网络优化算法研究[J]. 仪器仪表学报, 2016, 37 (7): 1573- 1580
LIU Hao-ran, ZHAO Cui-xiang, LI Xuan, et al Study on a neural network optimization algorithm based on improved genetic algorithm[J]. Chinese Journal of Scientific Instrument, 2016, 37 (7): 1573- 1580
doi: 10.3969/j.issn.0254-3087.2016.07.017
[22]   杨阳, 李春, 缪维跑, 等 基于多目标遗传算法的风力机叶片全局优化设计[J]. 机械工程学报, 2015, 51 (14): 192- 198
YANG Yang, LI Chun, MIAO Wei-pao, et al Global optimal design of wind turbines blade based on multi-object genetic algorithm[J]. Journal of Mechanical Engineering, 2015, 51 (14): 192- 198
[23]   TABOADA H A, ESPIRITU J F, COIT D W MOMS-GA: a multi-objective multi-state genetic algorithm for system reliability optimization design problems[J]. IEEE Transactions on Reliability, 2008, 57 (1): 182- 191
doi: 10.1109/TR.2008.916874
[24]   刘守山, 杨辰龙, 李凌, 等 基于自适应小波阈值的超声信号消噪[J]. 浙江大学学报: 工学版, 2007, 41 (9): 1557- 1560
LIU Shou-shan, YANG Chen-long, LI Ling, et al Adaptive wavelet thresholding based ultrasonic signal denoising[J]. Journal of Zhejiang University: Engineering Science, 2007, 41 (9): 1557- 1560
[25]   覃柏英, 林贤坤, 张令弥, 等 基于整数编码遗传算法的传感器优化配置研究[J]. 振动与冲击, 2011, 30 (2): 252- 257
QIN Bo-ying, LIN Xian-kun, ZHANG Ling-mi, et al Research on optimal sensor placement based on integer-coded genetic algorithm[J]. Journal of Vibration and Shock, 2011, 30 (2): 252- 257
doi: 10.3969/j.issn.1000-3835.2011.02.051
[1] SHANG Qiang, LIN Ci-yun, YANG Zhao-sheng, BING Qi-chun, XING Ru-ru. Traffic incident detection based on variable selection and kernel extreme learning machine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1339-1346.
[2] XIE Luo feng, XU Hui ning, HUANG Qin yuan, ZHAO Yue, YIN Guo fu. Application of DTCWPT and NCA-LSSVM to inspect internal defects of magnetic tile[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 184-191.
[3] WANG Shu peng, HUANG Kai, YAN Xiao lang. Coverage directed test generation based on genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 580-588.
[4] QIU Ri hui, LIU Kang ling, TAN Hai long, LIANG Jun. Classification algorithm based on extreme learning machine and its application in fault identification of Tennessee Eastman process[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1965-1972.
[5] LIU Yang, LU Nai wei, JIANG You bao. Adaptive support vector regression method for structural system reliability analysis[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1692-1699.
[6] XIAO Wen-sheng, CUI Jun-guo, LIU Jian, WU Xiao-dong, HUANG Hong-sheng. Optimization study for reducing cogging torque in permanent magnet synchronous motor used for direct-drive oil pumping[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 173-180.
[7] XIAO Wen-sheng, CUI Jun-guo, LIU Jian, WU Xiao-dong, HUANG Hong-sheng. ptimization study for reducing cogging torque in permanent magnet synchronous motor used for direct-drive oil pumping[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1-8.
[8] DUAN Bin, LIANG Jun, FEI Zheng-shun, YANG Min, HU Bin. Nonlinear semi-parametric modeling mothed based on GA-ANN[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 977-983.
[9] CHEN Hua-Feng, XIE Shi-Beng, HUANG Zhi-Cai, et al. Ocean scientific survey route designing method syncretizing triangulated irregular networks and genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(11): 1951-1957.