Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (6): 1119-1129    DOI: 10.3785/j.issn.1008-973X.2019.06.011
Mechanical and Energy Engineering     
Cooling system modeling and coolant temperature control for gasoline engine
Liang LV1(),Hong CHEN1,Xun GONG1,Hai-guang ZHAO2,Yun-feng HU1,*()
1. State Key Laboratory of Automotive Simulation and Control, College of Communication Engineering, Jilin University, Changchun 130025, China
2. Chinese Research Academy of Environmental Science, Beijing 100012, China
Download: HTML     PDF(1653KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A control-oriented heat transfer dynamic model of engine cooling system was developed and a nonlinear control method was proposed, according to the requirement of coolant temperature control of gasoline engine equipped with an electric fan and a mechanical pump. Firstly, the heating power from combustion chamber to liner was precisely modeled based on the heat transfer theory, thereby ensuring a more accurate dynamic model. Secondly, the dynamic model was simplified as a nonlinear model with affine form for the control variable. An extended state observer was designed to compensate the modeling error. A controller-oriented design model was obtained, which was relatively simple and accurate. Then, a state feedback controller was designed based on the Lyapunov stability and a nonlinear Smith predictor was introduced to compensate the system delay. The robustness of the closed-loop error system was also proved under the input-state stability theory. The simulation results show that, the proposed control system has good temperature tracking performance and robustness under mismatch and disturbance, and the fluctuation is less than 0.5 K under transient conditions.



Key wordsheat transfer dynamic model      nonlinear control      extended state observer      nonlinear Smith predictor      stability analysis     
Received: 16 November 2018      Published: 22 May 2019
CLC:  TK 411  
Corresponding Authors: Yun-feng HU     E-mail: lvliangcn@163.com;huyf@jlu.edu.cn
Cite this article:

Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.06.011     OR     http://www.zjujournals.com/eng/Y2019/V53/I6/1119


汽油发动机冷却系统建模与水温控制

针对冷却系统组件为电子风扇和机械水泵的汽油发动机的水温控制要求,建立面向控制的冷却系统传热动力学模型,并提出水温的非线性控制方法. 根据传热学原理建立燃烧室对壁面的加热功率精确模型,据此获得较为精确的传热动力学模型;将动力学模型简化为对控制变量具有仿射形式的非线性模型,并设计扩张状态观测器补偿建模误差,进而获得相对简单且精度较高的面向控制器设计的模型;在Lyapunov稳定性框架下设计状态反馈控制器,引入非线性史密斯预估器补偿系统延迟,并在输入到状态稳定性框架下证明闭环误差系统的鲁棒性. 仿真结果表明:所提控制系统具有良好的水温跟踪效果,在瞬态工况下水温波动小于0.5 K,且在模型失配扰动下具有较好的鲁棒性.


关键词: 传热动力学模型,  非线性控制,  扩张状态观测器,  非线性史密斯预估器,  稳定性分析 
Fig.1 Configuration of gasoline engine cooling system
Fig.2 Control graph of proposed gasoline engine cooling system
Fig.3 Diagram of heat transfer process between engine and coolant
常量或变量 值或获取方式 单位 常量或变量 值或获取方式 单位
Clnr 8 098 J/K qm,a 进气量传感器 g/s
Cblk 54 313 J/K N 转速传感器 r/min
Cc 25 769 J/K qm,c 流量传感器 g/s
ρ 1 031 kg/m3 Tc 水温传感器 K
Vd 3.758 L Tenv VCU K
v VCU km/h
Tab.1 Value of constants and source of variables in proposed control system
Fig.4 Variations of heating power to liner from combustion gas, friction between piston and piston ring, and combustion chamber
Fig.5 Diagram of gasoline engine ideal cycle
模型 RMSE/W NRMSE/%
Heywood(式(11)) 4 466 9.55
Bova(式(12)) 1 977 4.23
Zhou(式(13)) 3 857 8.25
本研究(式(21)) 861 1.84
Tab.2 Accuracy comparison of heating power models from combustion chamber to liner
Fig.6 Working conditions used for comparison of power models from combustion chamber to liner of different papers with GT-Power model
Fig.7 Comparison of power models from combustion chamber to liner of different papers with GT-Power model
Fig.8 Comparison results of proposed system dynamic models with GT-Power model
Fig.9 Comparison of coolant temperature between control system with and without disturbance observer
Fig.10 Comparison of coolant temperature between control system with and without Smith predictor
Fig.11 Working conditions used for proposed controller test
Fig.12 Control results of proposed controller under transient conditions
Fig.13 Comparison of control results between proposed controller and other controllers
[1]   BANJAC T, WURZENBERGER J C, KATRASNIK T Assessment of engine thermal management through advanced system engineering modeling[J]. Advances in Engineering Software, 2014, 71: 19- 33
doi: 10.1016/j.advengsoft.2014.01.016
[2]   JOHNSON T Vehicular emissions in review[J]. SAE International Journal of Engines, 2012, 7 (3): 1207- 1227
[3]   PAGE R W. Thermal management for the 21st century-improved thermal control & fuel economy in an army medium tactical vehicle [J]. SAE Technical Paper, 2005, 2005–01–2068.
[4]   郭新民, 高平, 孙世民, 等 自控电动冷却风扇在汽车发动机上的应用[J]. 内燃机工程, 1993, (1): 79- 82
GUO Xin-min, GAO Ping, SUN Shi-min, et al Application of an automatic control power-driven cooling fan in automobile engine[J]. Chinese Internal Combustion Engine Engineering, 1993, (1): 79- 82
[5]   FILHO I J D S, FRANCISCO A D O, PATERLINI B S, et al. Application study of electrical fans assemble applied in bus cooling system[J]. SAE Technical Paper, 2015, 2015–36–0402.
[6]   BRACE C J, BURNHAM-SLIPPER H, WIJETUNGE R S, et al. Integrated cooling systems for passenger vehicles[J]. SAE Technical Paper, 2001, 2001–01-1248.
[7]   MELZER F, HESSE U, ROCKLAGE G, et al. Thermo management [J]. SAE Technical Paper, 1999, 1999–01–0238.
[8]   ALLEN D J, LASECKI M P. Thermal management evolution and controlled coolant flow [J]. SAE Technical Paper, 2001, 2001–01–1732.
[9]   CHO H, JUNG D, FILIPI Z S, et al Application of controllable electric coolant pump for fuel economy and cooling performance improvement[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129 (1): 43- 50
[10]   BRUCKNER M, GRUENBACHER E, ALBERER D, et al. Predictive thermal management of combustion engines [C] // Proceedings of IEEE international Conference on Control Applications. Munich: IEEE, 2006: 2778–2783.
[11]   VERMILLION C, SUN J, BUTTS K Modeling, control design, and experimental validation of an overactuated thermal management system for engine dynamometer application[J]. IEEE Transactions on Control System Technology, 2009, 17 (3): 540- 551
doi: 10.1109/TCST.2008.2001267
[12]   ZHOU B, LAN X D, XU X H, et al Numerical model and control strategies for the advanced thermal management system of diesel engine[J]. Applied Thermal Engineering, 2015, 82: 368- 379
doi: 10.1016/j.applthermaleng.2015.03.005
[13]   PIZZONIA F, CASTIGLIONE T, BOVA S A robust model predictive control for efficient thermal management of internal combustion engines[J]. Applied Energy, 2016, 169: 555- 566
doi: 10.1016/j.apenergy.2016.02.063
[14]   CARESANA F, BILANCIA M, BARTOLINI C M Numerical method for assessing the potential of smart thermal management: application to a medium-upper segment passenger car[J]. Applied Thermal Engineering, 2011, 31: 3559- 3568
doi: 10.1016/j.applthermaleng.2011.07.017
[15]   SALAH M H, MITCHELL T H, WAGNER J R, et al A smart multiple-loop automotive cooling system-model, control, and experimental study[J]. IEEE-ASME Transactions on Mechatronics, 2009, 15 (1): 117- 124
[16]   SALAH M H, MITCHELL T H, WAGNER J R, et al Nonlinear-control strategy for advanced vehicle thermal-management system[J]. IEEE Transactions on Vehicular Technology, 2008, 57 (1): 127- 137
doi: 10.1109/TVT.2007.901892
[17]   陈家瑞. 汽车构造(上册)[M]. 北京: 机械工业出版社, 2009: 235–236.
[18]   PERSET D, JOUANNET B. Simulation of a cooling loop for a variable speed fan system [J]. SAE Technical Paper, 1999, 1999–01-0576.
[19]   郭新民, 魏新华, 傅旭光, 等 大型收获机电液混合驱动智能冷却系统[J]. 农业机械学报, 2006, 37 (4): 60- 63
GUO Xin-min, WEI Xin-hua, FU Xu-guang, et al Study on intelligent system of electric hydraulic admixture drive for big reaping machine[J]. Transactions of the Chinese Society of Agricultural Machinery, 2006, 37 (4): 60- 63
doi: 10.3969/j.issn.1000-1298.2006.04.016
[20]   CHOUKROUN A, CHANFREAU M. Automatic control of electronic actuators for an optimized engine cooling thermal management [J]. SAE Technical Paper, 2001, 2001–01-1758.
[21]   BADEKAR R, MAHAJAN J, KAKAYE S, et al. Development of control system for electrical radiator fan using dual sensor microprocessor based electronic unit [J]. SAE Technical Paper, 2006, 2006–01-1035.
[22]   陈贵堂, 王永珍. 工程热力学[M]. 北京: 北京理工出版社, 2008: 41–44.
[23]   杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.
[24]   乙二醇水溶液物性[DS/OL].(2016-01-04)[2019-01-02]. https://wenku.baidu.com/view/046d8b317c1cfad6185fa749.html.
[25]   KHODABAKHSHIAN M, FENG L, BORHESSON S, et al Reducing auxiliary energy consumption of heavy trucks by onboard prediction and real-time optimization[J]. Applied Energy, 2017, 188: 652- 671
doi: 10.1016/j.apenergy.2016.11.118
[26]   HEYWOOD J. Internal combustion engine fundamentals [M]. New York: McGraw Hill, 1988: 698–707.
[27]   BOVA S, CASTIGLIONE T, PIZZONIA F A dynamic nucleate-boiling model for CO2 reduction in internal combustion engines[J]. Applied Energy, 2015, 163: 271- 282
[28]   CORTONA E, ONDER C H. Engine thermal management with electric cooling pump [J]. SAE Technical Paper, 2000, 2000–01-0965.
[29]   白敏丽, 丁铁新, 董卫军 活塞环-气缸套润滑摩擦研究[J]. 内燃机学报, 2005, 23 (1): 72- 76
BAI Min-li, DING Tie-xin, DONG Wei-jun A study on lubrication and friction on piston-ring pack in IC engine[J]. Transactions of CSICE, 2005, 23 (1): 72- 76
doi: 10.3321/j.issn:1000-0909.2005.01.012
[30]   SINGH A P, GADEKAR S, AGARWAL A K. In-cylinder air-flow characteristics using tomographic PIV at different engine speeds, intake air temperatures and intake valve deactivation in a single cylinder [J]. SAE Technical Paper, 2016, 2016–28-0001.
[31]   韩京清. 自抗扰控制技术[M]. 北京: 国防工业出版社, 2013: 184–207.
[32]   宾洋. 车辆走停巡航系统的非线性控制研究 [D/OL]. 北京: 清华大学, 2006.
BIN Yang. Study on nonlinear control of vehicle stop and go cruise control system [D/OL]. Beijing: Tsinghua University, 2006.
[33]   陈虹, 胡云峰, 郭宏志, 等 基于backstepping方法的电子节气门控制[J]. 控制理论与应用, 2011, 28 (4): 491- 496
CHEN Hong, HU Yun-feng, GUO Hong-zhi, et al Control of electronic throttle based on backstepping approach[J]. Control Theory and Applications, 2011, 28 (4): 491- 496
[1] Hai-hui YUAN,Yi-min GE,Chun-biao GAN. Adaptive robust control of dynamic walking of bipedal robots under uncertain disturbances[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2049-2057.
[2] TAN Pan-long, SUN Qing-lin, CHEN Zeng-qiang. Application of active disturbance rejection control in trajectory tracking of powered parafoil system[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 992-999.
[3] ZHU Zhao-chen, XIANG Yang, LUO Yong-feng. Characteristic stiffness method for static stability analysis and assessment of spatial structure[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2112-2120.
[4] WANG Ting, CHEN Bin, YAO Wen-xi, LV Zheng-yu. Pefrormance analysis of holtz flux observer in speed-sensorless induction motor drive[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1690-1695.
[5] YANG Bo, ZHONG Yan-ru, ZENG Guang. DC capacitor voltage balance control strategy of cascade static synchronous compensator based on step wave modulation[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 600-609.
[6] ZHAO Quan-li, SUN Hong-yue, SHANG Yue-quan, WANG Zhi-lei. Effect of temporal and spatial variation of pore water pressure induced by confined groundwater on slope stability[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1366-1372.
[7] YE Qiu-hong, LING Dao-sheng. Limit equilibrium analysis method based on vector sum method for 3D slope[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 1097-1103.
[8] LIU Zhao-Yan, JIANG Quan-Yuan, XU Li-Zhong,et al. Stability regions of time-delayed power system based on clustering treatment of characteristic roots[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1473-1479.