Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (5): 988-996    DOI: 10.3785/j.issn.1008-973X.2019.05.021
    
Optimization calculation method for efficiency of multistage split case centrifugal pump
Shui-guang TONG1(),Hang ZHAO1,Hui-qin LIU1,Zhe-ming TONG1,Yue YU1,Ning TANG1,Wei-jie WU1,Jin-fu LI2,Fei-yun CONG1,*(),Hao ZHANG3,Yin-hua WANG4,Guo-shuai HAO5
1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Hangzhou Alkali Pump Co. Ltd, Hangzhou 310030, China
3. Hangzhou Resource Power Equipment Co. Ltd, Hangzhou 311202, China
4. Hangzhou Hangfa Electrical Equipment Co. Ltd, Hangzhou 311215, China
5. Shenyang Turbine Machinery Co. Ltd, Shenyang 110869, China
Download: HTML     PDF(1471KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The optimization calculation method of the hydraulic efficiency and the relative width of high efficient area for centrifugal pumps was researched. The multi-objective optimization calculation method of the approximate models was proposed based on the hydraulic loss model. Optimization design of multi-stage dual split centrifugal pump was conducted as an example. The key design variables were selected out through sensitivity analysis based on the hydraulic loss model. The hydraulic loss model, the complete quadratic response surface function (RSF) model, the radial basis Gaussian response surface function (RBF) model and the Kriging response surface function (KRG) model were used respectively to optimize the key design variables of centrifugal pumps. The accuracy and efficiency of the four methods were analyzed as well. Results showed that the calculation time of the first optimization method based on the theoretical formula was the shortest, but the error was big. The latter three optimization methods were based on the computational fluid dynamics (CFD) numerical simulation analysis and the results were accurate. The results of RSF model were the most accurate and the calculation time was short. The calculation results of RSF was the most accurate, followed by that of RBF, and the worst was that of KRG by the comparison of the calculation accuracies of the three approximate models. The Pareto optimal solution based on RSF had the head of 83.77 m and the efficiency of 77.26% with the design flow. The Pareto optimal solution based on RBF had the head of 83.09 m and the efficiency of 76.63% with the design flow.



Key wordsmultistage centrifugal pump      hydraulic loss model      key design variables      approximate model      muti-objective optimization     
Received: 26 April 2018      Published: 17 May 2019
CLC:  TH 311  
Corresponding Authors: Fei-yun CONG     E-mail: cetongsg@163.com;cloudswk@zju.edu.cn
Cite this article:

Shui-guang TONG,Hang ZHAO,Hui-qin LIU,Zhe-ming TONG,Yue YU,Ning TANG,Wei-jie WU,Jin-fu LI,Fei-yun CONG,Hao ZHANG,Yin-hua WANG,Guo-shuai HAO. Optimization calculation method for efficiency of multistage split case centrifugal pump. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 988-996.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.05.021     OR     http://www.zjujournals.com/eng/Y2019/V53/I5/988


中开多级离心泵效率优化计算方法

对离心泵水力效率及高效区相对宽度的优化计算方法进行研究,在水力损失模型的基础上提出基于近似模型的多目标优化计算方法. 以中开多级离心泵的优化设计为例,基于水力损失模型进行设计变量灵敏度分析,选出关键设计变量. 分别利用水力损失、完全二次响应面(RSF)、径向基高斯响应面(RBF)和克里金响应面(KRG)4种近模型优化离心泵的关键设计变量,分析4种效率优化计算方法的精确性和有效性. 结果表明:基于理论公式计算的第1种优化方法耗时少,但结果误差较大;后3种优化方法基于计算流体动力学(CFD)数值仿真分析,结果准确,其中RSF模型的结果最精确且计算时间较短. 比较3种不同近似模型的计算精度,RSF的计算结果最精确,RBF结果次之,KRG结果最差. 在设计流量下,基于RSF的Pareto最优解的扬程为83.77 m,效率为77.26%,基于RBF的Pareto最优解的扬程为83.09 m,效率为76.63%.


关键词: 多级离心泵,  水力损失模型,  关键设计变量,  近似模型,  多目标优化 
Fig.1 Optimal design scheme of singlestage centrifugal pump
设计变量 范围
Z [3, 7]
$\,{\beta _1}$ $[{10^ \circ }, \;{35^ \circ }]$
$\,{\beta _2}$ $[{14^ \circ },\;{24^ \circ }]$
${D_2}$ $ [10.4{{\left( {{n}_{{\rm{s}}}}/100 \right)}^{-{1}/{2}\;}}{{(q_{V}/n)}^{{1}/{3}\;}},\;11.1{{\left( {{n}_{{\rm{s}}}}/100 \right)}^{-{1}/{2}\;}}{{(q_{V}/n)}^{^{{1}/{3}\;}}}]$
${b_2}$ $ [0.85{{\left( {{n}_{{\rm{s}}}}/100 \right)}^{{5}/{6}\;}}{{(q_{V}/n)}^{{1}/{3}\;}},\;1.2{{\left( {{n}_{{\rm{s}}}}/100 \right)}^{{5}/{6}\;}}{{(q_{V}/n)}^{{1}/{3}\;}}]$
${D_{\rm{s}}}$ $ [12{{(q_{V}/n)}^{{1}/{3}\;}},\;15{{(q_{V}/n)}^{{1}/{3}\;}}]$
${D_{\rm{h}}}$ $ [8.5{{(q_{V}/n)}^{{1}/{3}\;}},\;11.7{{(q_{V}/n)}^{{1}/{3}\;}}]$
$\varphi $ $ [{{140}^{\circ }},\;{{180}^{\circ }}]$
$\theta $ $ [{{18}^{\circ }},\;{{28}^{\circ }}]$
${D_3}$ $ [1.03{{D}_{2}},\;1.06{{D}_{2}}]$
$Y$ $ [0.8,\;2.0]$
Tab.1 Range of design variables of multistage pump
Fig.2 Effect curve of univariate on external characteristic values of singlestage centrifugal pump
Fig.3 Sensitivity analysis for design variables of centrifugal pump
Fig.4 Mesh model of singlestage centrifugal pump
近似模型 RMSE/% R2/%
H P η H P η
不完全RSF 0.10 0.24 0.26 96.96 94.41 82.34
完全RSF 0.08 0.15 0.21 97.81 97.78 89.33
RBF 0.10 0.22 0.25 97.19 95.46 84.20
Tab.2 Validity test of response surface model
Fig.6 Comparison of approximate model predicted hydraulic power with CFD numerical calculation result
Fig.7 Comparison of approximate model predicted hydraulic power with CFD numerical calculation result
模型 D2/mm b2/mm β2/(°) 模型理论计算值 CFD仿真计算值 误差/%
H/m P/kW η/% H/m P/kW η/% H P η
HLoss 273.9 14.0 17.0 82.40 26.51 75.98 76.89 24.55 74.10 7.15 7.98 3.78
RSF 279.0 13.0 15.0 84.19 26.11 77.32 83.77 26.03 77.26 0.50 0.31 0.08
RBF 277.0 14.5 15.0 83.13 26.30 75.85 83.09 26.00 76.63 0.50 1.15 1.02
KRG 275.0 15.5 15.0 84.06 26.69 75.02 82.13 25.98 75.81 2.35 2.73 1.04
Tab.3 Pareto optimal solution and CFD numerical simulation analysis of four calculation models
Fig.5 Comparison of approximate model predicted head value with CFD numerical calculation result
Fig.8 Full flow performance prediction of singlestage centrifugal pump with impeller 1 and 2
[1]   杨军虎, 边中, 钟春林, 等 基于水力损失计算的离心泵叶轮叶片出口安放角选择方法[J]. 西华大学学报: 自然科学版, 2016, (3): 89- 92
YANG Jun-hu, BIAN Zhong, ZHONG Chun-lin, et al Method for selecting centrifugal pump impeller outlet angle based on calculation of centrifugal pump impeller's hydraulic loss[J]. Journal of Xihua University: Natural Science, 2016, (3): 89- 92
[2]   高江永. 离心泵叶轮与蜗壳参数优化设计的研究[D].邯郸: 河北工程大学, 2008.
GAO Jiang-yong. Study on optimization of centrifugal pump impeller's and volute's parameters [D]. Handan: Hebei University of Engineering, 2008.
[3]   聂松辉, 朱柏林, 廖述涛, 等 基于遗传算法的离心泵优化设计[J]. 机械设计, 2013, (12): 19- 22
NIE Song-hui, ZHU Bai-lin, LIAO Shu-tao, et al Optimization design of centrifugal pump based on genetic algorithm[J]. Journal of Machine Design, 2013, (12): 19- 22
[4]   王春林, 彭海菠, 丁剑, 等 基于响应面法的旋流泵优化设计[J]. 农业机械学报, 2013, 44 (5): 59- 65
WANG Chun-lin, PENG Hai-bo, DING Jian, et al Optimization for vortex pump based on response surface method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44 (5): 59- 65
[5]   王文杰, 袁寿其, 裴吉, 等 基于Kriging模型和遗传算法的泵叶轮两工况水力优化设计[J]. 机械工程学报, 2015, (15): 33- 38
WANG Wen-jie, YUAN Shou-qi, PEI Ji, et al Two-point hydraulic optimization of pump impeller based on kriging model and neighborhood cultivation genetic algorithm[J]. Journal of Mechanical Engineering, 2015, (15): 33- 38
[6]   BELLARY S A I, HUSAIN A, SAMAD A Effectiveness of meta-models for multi-objective optimization of centrifugal impeller[J]. Journal of Mechanical Science and Technology, 2014, 28 (12): 4947- 4957
[7]   BELLARY S A I, ADHAV R, SIDDIQUE M H, et al Application of computational fluid dynamics and surrogate-coupled evolutionary computing to enhance centrifugal-pump performance[J]. Engineering Applications of Computational Fluid Mechanics, 2016, 10 (1): 171- 181
[8]   HEO M, MA S, SHIM H, et al High-efficiency design optimization of a centrifugal pump[J]. Journal of Mechanical Science and Technology, 2016, 30 (9): 3917- 3927
[9]   谈明高, 刘厚林, 袁寿其 离心泵水力损失的计算[J]. 江苏大学学报: 自然科学版, 2007, 28 (5): 405- 408
TAN Ming-gao, LIU Hou-lin, YUAN Shou-qi Calculation of hydraulic loss in centrifugal pumps[J]. Journal of Jiangsu University: Natural Science Edtion, 2007, 28 (5): 405- 408
[10]   王丹. 基于遗传算法的中低比转速离心泵优化设计[D]. 兰州: 兰州理工大学, 2016.
WANG Dan. Optimization design of low specific-speed centrifugal pump based on genetic algorithm [D]. Lanzhou: Lanzhou University of Technology, 2016.
[11]   马艺, 马中强, 张生昌, 等 中比转速无过载多级离心泵的叶轮设计方法[J]. 上海交通大学学报, 2015, 49 (5): 695- 701
MA Yi, MA Zhong-qiang, ZHANG Sheng-chang, et al A novel design method for impeller of medium specific speed non-overload multistage centrifugal pump[J]. Journal of Shanghai Jiaotong University, 2015, 49 (5): 695- 701
[12]   张宇, 覃刚, 张云清, 等 基于克里金响应面元模型的离心泵水力性能多目标优化[J]. 华中科技大学学报: 自然科学版, 2015, 43 (4): 54- 57
ZHANG Yu, QIN Gang, ZHANG Yun-qing, et al Kriging based muti-objective optimization for hydraulic performance of centrifugal pump[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43 (4): 54- 57
[13]   高江永. 离心泵叶轮与蜗壳参数优化设计的研究[D]. 邯郸: 河北工程大学, 2008.
GAO Jiang-yong. Study on optimization of centrifugal pump impeller's and volute's parameters [D]. Handan: Hebei University of Engineering, 2008.
[14]   BABAYIGIT O, KOCAASLAN O, AKSOY M H, et al. Numerical identification of blade exit angle effect on the performance for a multistage centrifugal pump impeller [J]. EPJ Web of Conferences, 2015, 92: 2003.
[15]   MOHAMMADI N, FAKHARZADEH M Analysis of effect of impeller geometry including blade outlet angle on the performance of multi-pressure pumps: Simulation and experiment[J]. Mechanika, 2017, 23 (1): 107- 119
[16]   KOCAASLAN O, OZGOREN M, BABAYIGITO, et al Numerical investigation of the effect of number of blades on centrifugal pump performance[J]. AIP Conference Proceedings, 2017, 1863 (1): 030028
[1] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[2] ZHANG De sheng, SHI Lei, CHEN Jian, PAN Qiang, SHI Wei dong. Experimental analysis on characteristic of cavitation in tip region of axial flow pump impeller[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1585-1592.
[3] SUN You-bo, CHEN Tao, YANG Shuai, WU Da-zhuan, WANG Le-qin. Improvement design of hydraulic components and structure of
vertical self-priming pump
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 332-338.
[4] WU Da-zhuan, XU Bin-jie, WU Peng, LI Zhi-feng, WANG Le-qing. Internal clearance flow and leakage loss in multi-stage
centrifugal pump
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1393-1398.
[5] HU Hao, QI Guo-ning, JI Yang-jian, LUO Hua-wu, LIU Hai-qiang. The product structure model for maintenance in product lifecycle[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(11): 2108-2112.
[6] JIANG Qing-lei,XING Gui-kun,WU Da-zhuan,WANG Le-qin. Computation of transient fluid induced force of small clearance
flow in centrifugal pump
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 929-934.