The neural network pooling prediction model of visual multi-channel was constructed and an image quality assessment method based on deep pooling of visual feature was proposed, aiming at the shortcoming of current research on visual perception characteristic and image feature assessment algorithms. Firstly, two complementary visual assessment algorithms based on histogram statistics and singular value decomposition were designed with human visual system characteristics. Further, the sparse gradient information of every visual channel for one image was deeply processed. Secondly, the multi-channel assessment pooling of every visual feature layer was predicted, respectively, by constructing a pooling model of the BP neural network. Finally, the visual feature assessment of three layers was deep adaptively pooled from the inner layer to the outer layer. The experiment results show that the constructed pooling model effectively improves the index level of every assessment algorithm, and the proposed method achieves great advantage compared to the existing methods.
Ming-kun FENG,Xiang SHI. Image quality assessment with deep pooling of visual feature. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 512-521.
Tab.3Assessment results comparison between proposed DPPNNP and other methods on databases CSIQ and tid2013
Fig.3Scatter distribution plot of various methods
评价方法
t/s
评价方法
t/s
MSSIM
171
IFC
2 020
SVD
238
VIF
2 083
VSI
484
IGM
39 194
FSIM
653
DPPNNP
21 127
MAD
3 128
—
—
Tab.4Test results comparisons of time complexity for different image quality assessment methods
[1]
GUO Y C, HAO Y T, YU M Image retargeting quality assessment based on content deformation measurement[J]. Signal Processing: Image Communication, 2018, 67 (6): 171- 181
[2]
CHEN Z B, LIN J X, LIAO N, et al Full reference quality assessment for image retargeting based on natural scene statistics modeling and bi-directional saliency similarity[J]. IEEE Transactions on Image Processing, 2017, 26 (11): 5138- 5148
doi: 10.1109/TIP.2017.2736422
[3]
ZHANG Y CH, KING N N, MA L, et al Objective quality assessment of image retargeting by incorporating fidelity measures and inconsistency detection[J]. IEEE Transactions on Image Processing, 2017, 26 (11): 5980- 5993
[4]
ZHANG Y B, LIN W S, LI Q H, et al Multiple-level feature-based measure for retargeted image quality[J]. IEEE Transactions on Image Processing, 2018, 27 (1): 451- 463
doi: 10.1109/TIP.2017.2761556
[5]
丰明坤, 王中鹏, 叶绿 视觉稀疏化多通道多特征自适应的图像评价[J]. 仪器仪表学报, 2016, 37 (3): 667- 674 FENG Ming-kun, WANG ZHong-peng, YE Lv Image quality assessment based on adaptive sparse visual multi-channel and multi-feature pooling[J]. Chinese Journal of Scientific Instrument, 2016, 37 (3): 667- 674
doi: 10.3969/j.issn.0254-3087.2016.03.025
[6]
BAMPIS C G, GUPTA P, SOUNDARARAJAN R, et al SpEED-QA: patial efficient entropic differencing for image and video quality[J]. IEEE Signal Processing Letters, 2017, 24 (9): 1333- 1337
doi: 10.1109/LSP.2017.2726542
[7]
NI ZH K, MA L, ZENG H Q, et al Gradient direction for screen content image quality assessment[J]. IEEE Signal Processing Letters, 2016, 23 (10): 1394- 1398
doi: 10.1109/LSP.2016.2599294
[8]
KIM J, ZENG H, GHADIYARAM D, et al Deep convolutional neural models for picture-quality prediction: challenges and solutions to data-driven image quality assessment[J]. IEEE Signal Processing Magazine, 2017, 34 (6): 130- 141
doi: 10.1109/MSP.2017.2736018
[9]
GHADIYARAM D, BOVIK A. C Massive online crowdsourced study of subjective and objective picture quality[J]. IEEE Transactions on Image Process, 2016, 25 (1): 372- 387
doi: 10.1109/TIP.2015.2500021
[10]
LARSON E C, CHANDLER D M Most apparent distortion: full-reference image quality assessment and the role of strategy[J]. Journal of Electronic Imaging, 2010, 19 (1): 011006-1- 011006-21
[11]
ZHANG L, ZHANG L, MOU X Q, et al FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20 (8): 2378- 2386
doi: 10.1109/TIP.2011.2109730
[12]
ZHANG L, SHEN Y LI H Y VSI: a visual saliency-induced index for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2014, 23 (10): 4270- 4281
doi: 10.1109/TIP.2014.2346028
[13]
DING Y, WANG SH Z, ZHANG D Full-reference image quality assessment using statistical local correlation[J]. Electronics Letters, 2014, 50 (2): 79- 81
doi: 10.1049/el.2013.3365
[14]
WU J J, LIN W S, SHI G M Perceptual quality metric with internal generative mechanism[J]. IEEE Transactions on Image Processing, 2013, 22 (1): 43- 54
doi: 10.1109/TIP.2012.2214048
[15]
丰明坤, 赵生妹, 邢超 基于视觉显著失真度的图像质量自适应评价方法[J]. 电子与信息学报, 2015, 37 (9): 2062- 2068 FENG Ming-kun, ZHAO SHeng-mei, XING CHao Image quality self-adaptive assessment based on visual salience distortion[J]. Journal of Electronics & Information Technology, 2015, 37 (9): 2062- 2068
[16]
丰明坤, 赵生妹, 施祥 视觉多通道梯度与低阶矩自适应图像评价[J]. 仪器仪表学报, 2015, 36 (11): 2531- 2537 FENG Ming-kun, ZHAO SHeng-mei, SHI Xiang Adaptive image quality assessment based on visual multi-channel gradient and low order moment[J]. Chinese Journal of Scientific Instrument, 2015, 36 (11): 2531- 2537
doi: 10.3969/j.issn.0254-3087.2015.11.017
[17]
WANG ZH, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612
doi: 10.1109/TIP.2003.819861
[18]
WANG ZH, LU L G, BOVIK A C Foveation scalable video coding with automatic fixation selection[J]. IEEE Transactions on Image Processing, 2003, 12 (2): 243- 254
doi: 10.1109/TIP.2003.809015
[19]
LIU A M, LIN W S, NARWARIA M Image quality assessment based on gradient similarity[J]. IEEE Transaction on Image Processing, 2012, 21 (4): 1500- 1512
doi: 10.1109/TIP.2011.2175935
[20]
GAO X B, LU W, TAO D CH, et al Image quality assessment based on multiscale geometric analysis[J]. IEEE Transactions on Image Processing, 2009, 18 (7): 1409- 1423
doi: 10.1109/TIP.2009.2018014
[21]
林志洁, 丰明坤 深度视觉特征与策略互补融合的图像质量评价[J]. 模式识别与人工智能, 2017, 30 (8): 682- 691 LIN ZHi-jie, FENG Ming-kun Image quality assessment based on complementary pooling of deeply visual feature and strategy[J]. Pattern Recognition and Artificial Intelligence, 2017, 30 (8): 682- 691
[22]
SHNAYDERMAN A, GUSEV A, ESKICIOGLU A M An SVD-based grayscale image quality measure for local and global assessment[J]. IEEE Transactions on Image Processing, 2006, 15 (2): 422- 429
doi: 10.1109/TIP.2005.860605
[23]
HU A ZH, ZHANG R YIN D, et al Image quality assessment using an SVD-based structural projection[J]. Signal Processing: Image Communication, 2014, 29 (3): 293- 302
doi: 10.1016/j.image.2014.01.007
[24]
WANG ZH, SIMONCELLI E P, BOVIK A C. Multi-scale structural similarity for image quality assessment [C]// Proceedings of the 37th IEEE Asilomar Conference on Signals, Systems and Computers. Pacific Grove: IEEE, 2002(2): 1398–1402.
[25]
SHEIKH H R, BOVIK A C, VECIANA G D An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14 (12): 2117- 2128
doi: 10.1109/TIP.2005.859389