Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (3): 512-521    DOI: 10.3785/j.issn.1008-973X.2019.03.012
Computer Technology     
Image quality assessment with deep pooling of visual feature
Ming-kun FENG(),Xiang SHI
School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
Download: HTML     PDF(890KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The neural network pooling prediction model of visual multi-channel was constructed and an image quality assessment method based on deep pooling of visual feature was proposed, aiming at the shortcoming of current research on visual perception characteristic and image feature assessment algorithms. Firstly, two complementary visual assessment algorithms based on histogram statistics and singular value decomposition were designed with human visual system characteristics. Further, the sparse gradient information of every visual channel for one image was deeply processed. Secondly, the multi-channel assessment pooling of every visual feature layer was predicted, respectively, by constructing a pooling model of the BP neural network. Finally, the visual feature assessment of three layers was deep adaptively pooled from the inner layer to the outer layer. The experiment results show that the constructed pooling model effectively improves the index level of every assessment algorithm, and the proposed method achieves great advantage compared to the existing methods.



Key wordsimage quality assessment      BP neural network      deep feature processing      visual perception characteristic      pooling prediction model     
Received: 16 July 2018      Published: 04 March 2019
CLC:  TH 741.1  
Cite this article:

Ming-kun FENG,Xiang SHI. Image quality assessment with deep pooling of visual feature. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 512-521.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.03.012     OR     http://www.zjujournals.com/eng/Y2019/V53/I3/512


视觉特征深度融合的图像质量评价

针对当前视觉感知特性研究和图像特征评价算法的不足,通过构建视觉多通道神经网络融合预测模型,提出一种视觉特征深度融合的图像质量评价方法. 首先,结合人类视觉系统特性设计直方图统计和奇异值分解2个互补视觉评价算法,进一步对图像各视觉通道的稀疏化梯度信息进行深度处理. 其次,构建BP神经网络融合模型,对各层视觉特征的多通道评价融合分别进行预测. 最后,对3层视觉特征评价从内层到外层逐层地进行深度自适应融合. 实验结果表明,所构建的融合模型有效提高了各种评价算法的指标水平,所提方法优于已有方法.


关键词: 图像质量评价,  BP神经网络,  深度特征处理,  视觉感知特性,  融合预测模型 
Fig.1 Schematic diagram of deep perception processing and neural network prediction (DPPNNP) method with fusion of image features
失真类型参数设置 指标 MSSIM IFC VIF GSM FSIM VSI SVD IGM MAD DPPNNP
JPEG2000
$\begin{array}{*{20}{c}} {{\gamma _{{\rm{11}}}} = 0.{\rm{4}}}&{{\gamma _{{\rm{12}}}} = 0.{0}1} \\ {{\gamma _{{\rm{21}}}} = {0}{\rm{.02}}}&{{\gamma _{{\rm{22}}}} = 0.0{01}} \\ {{\gamma _{{\rm{31}}}} = {\rm{40}}{\rm{.0}}}&{{\gamma _{{\rm{32}}}} = 0.{\rm{00}}1} \end{array}$
RMSE 4.414 2 4.696 1 4.714 8 4.179 3 4.408 6 5.496 8 4.445 8 3.310 5 3.059 1 3.873 1
PLCC 0.983 3 0.981 1 0.980 9 0.985 1 0.983 4 0.974 0 0.983 1 0.990 7 0.992 0 0.987 2
SROCC 0.984 5 0.964 1 0.978 7 0.986 9 0.988 4 0.969 8 0.981 4 0.986 6 0.987 1 0.984 1
JPEG
$\begin{array}{*{20}{c}} {{\gamma _{{\rm{11}}}} = 0.{\rm{3}}}&{{\gamma _{{\rm{12}}}} = 0.1} \\ {{\gamma _{{\rm{21}}}} = {0}{\rm{.02}}}&{{\gamma _{{\rm{22}}}} = {0}{\rm{.001}}} \\ {{\gamma _{{\rm{31}}}} = {\rm{10}}{\rm{.0}}}&{{\gamma _{{\rm{32}}}} = 0.{\rm{4}}} \end{array}$
RMSE 3.600 4 3.251 14 2.802 7 3.909 6 3.861 5 3.941 4 3.419 4 2.336 6 4.532 8 1.936 9
PLCC 0.989 3 0.991 3 0.993 6 0.987 4 0.987 7 0.987 2 0.990 4 0.995 5 0.983 0 0.996 9
SROCC 0.977 9 0.953 8 0.965 0 0.965 0 0.980 1 0.954 1 0.953 6 0.976 0 0.967 1 0.975 8
WN
$\begin{array}{*{20}{c}} {{\gamma _{{\rm{11}}}} = {0}{\rm{.4}}}&{{\gamma _{{\rm{12}}}} = 0.{01}} \\ {{\gamma _{{\rm{21}}}} = {0}{\rm{.04}}}&{{\gamma _{{\rm{22}}}} = {0}{\rm{.01}}} \\ {{\gamma _{{\rm{31}}}} = {\rm{40}}{\rm{.0}}}&{{\gamma _{{\rm{32}}}} = {0}{\rm{.000\;1}}} \end{array}$
RMSE 2.866 7 3.078 6 4.131 3 3.307 9 3.933 6 3.335 2 2.374 2 1.659 0 3.124 3 1.260 6
PLCC 0.992 8 0.991 7 0.985 1 0.990 5 0.986 5 0.990 3 0.995 1 0.997 6 0.991 5 0.998 6
SROCC 0.984 7 0.957 7 0.966 6 0.987 9 0.976 9 0.974 7 0.994 0 0.994 5 0.991 3 0.993 3
Gblur
$\begin{array}{*{20}{c}} {{\gamma _{{\rm{11}}}} = {0}{\rm{.4}}}&{{\gamma _{{\rm{12}}}} = 0.{01}} \\ {{\gamma _{{\rm{21}}}} = {0}{\rm{.04}}}&{{\gamma _{{\rm{22}}}} = {0}{\rm{.01}}} \\ {{\gamma _{{\rm{31}}}} = {\rm{40}}{\rm{.0}}}&{{\gamma _{{\rm{32}}}} = {0}{\rm{.000\;1}}} \end{array}$
RMSE 5.454 9 3.859 5 7.503 8 5.505 4 4.566 3 5.523 8 6.776 2 3.629 6 3.893 0 3.135 4
PLCC 0.976 3 0.988 2 0.954 6 0.975 8 0.983 4 0.975 7 0.963 1 0.989 6 0.988 0 0.992 2
SROCC 0.989 2 0.969 0 0.933 4 0.987 9 0.991 6 0.967 9 0.963 5 0.988 8 0.987 7 0.987 7
Fastfading
$\begin{array}{*{20}{c}} {{\gamma _{{\rm{11}}}} = 0.{\rm{3}}}&{{\gamma _{{\rm{12}}}} = 0.{\rm{1}}} \\ {{\gamma _{{\rm{21}}}} = {0}{\rm{.02}}}&{{\gamma _{{\rm{22}}}} = {0}{\rm{.001}}} \\ {{\gamma _{{\rm{31}}}} = {\rm{40}}{\rm{.0}}}&{{\gamma _{{\rm{32}}}} = 0.{\rm{00}}1} \end{array}$
RMSE 4.818 3 5.117 4 4.125 8 5.078 8 5.258 1 5.553 9 6.184 3 5.086 5 4.192 0 2.838 3
PLCC 0.979 7 0.977 1 0.985 2 0.977 5 0.975 8 0.973 0 0.966 4 0.977 4 0.984 7 0.993 6
SROCC 0.984 1 0.957 0 0.969 5 0.982 7 0.981 5 0.964 4 0.969 9 0.972 0 0.985 0 0.990 7
失真类型总和
$\begin{array}{*{20}{c}} {{\gamma _{{\rm{11}}}} = {0}{\rm{.28}}}&{{\gamma _{{\rm{12}}}} = 0.{\rm{3}}} \\ {{\gamma _{{\rm{21}}}} = {0}{\rm{.4}}}&{{\gamma _{{\rm{22}}}} = {0}{\rm{.001}}} \\ {{\gamma _{{\rm{31}}}} = {\rm{6}}{\rm{.0}}}&{{\gamma _{{\rm{32}}}} = 0.{\rm{08}}} \end{array}$
RMSE 6.231 9 5.371 8 7.469 2 6.103 1 5.784 3 6.597 9 6.279 0 4.722 0 5.517 2 4.132 4
PLCC 0.967 3 0.975 8 0.952 6 0.968 6 0.971 9 0.963 2 0.966 8 00.981 3 0.974 4 0.987 5
SROCC 0.965 1 0.955 2 0.920 6 0.971 8 0.977 8 0.949 1 0.967 2 0.974 1 0.977 3 0.981 5
Tab.2 Assessment results comparison between proposed DPPNNP and other methods on database LIVE
Fig.2 Predicting model of multi-channel assessment pooling based on BP neural network
失真类型 指标 E F Q
BP模型 CSF函数 BP模型 CSF函数 BP模型 CSF函数
JPEG2000 RMSE 5.260 7 11.617 2 4.554 0 5.308 6 4.063 1 4.362 6
PLCC 0.976 2 0.878 0 0.982 2 0.975 8 0.985 9 0.983 7
SROCC 0.960 9 0.611 0 0.972 7 0.967 9 0.983 3 0.986 3
JPEG RMSE 3.304 9 9.356 4 2.893 8 3.495 9 3.567 8 3.544 2
PLCC 0.991 0 0.926 5 0.993 1 0.990 0 0.986 7 0.989 7
SROCC 0.952 5 0.736 9 0.964 5 0.931 0 0.977 2 0.976 0
WN RMSE 3.366 2 10.333 7 3.349 8 3.295 3 1.331 4 2.427 7
PLCC 0.990 1 0.902 6 0.990 2 0.990 5 0.998 5 0.994 9
SROCC 0.975 1 0.683 9 0.986 0 0.983 5 0.992 8 0.993 2
gblur RMSE 6.173 2 6.982 4 5.527 6 5.513 4 3.013 2 5.196 6
PLCC 0.969 5 0.960 8 0.975 6 0.975 8 0.992 8 0.978 5
SROCC 0.953 1 0.958 3 0.983 4 0.975 8 0.988 0 0.987 7
Fastfading RMSE 6.916 8 11.155 8 6.241 0 7.739 9 3.731 1 6.591 0
PLCC 0.957 8 0.886 0 0.965 8 0.946 8 0.987 9 0.961 7
SROCC 0.931 8 0.741 2 0.960 7 0.923 2 0.986 3 0.956 6
Tab.1 Results comparison of BP neural network predicting vs CSF pooling
数据库名称及参数设置 指标 MSSIM IFC VIF GSM FSIM VSI SVD IGM MAD DPPNNP
CSIQ
$\begin{array}{*{20}{c}} {{\gamma _{{\rm{11}}}} = 0.{\rm{001}}}&{{\gamma _{{\rm{12}}}} = 0.1} \\ {{\gamma _{{\rm{21}}}} = {0}{\rm{.3}}}&{{\gamma _{{\rm{22}}}} = {\rm{4}}{\rm{.0}}} \\ {{\gamma _{{\rm{31}}}} = {\rm{100}}{\rm{.0}}}&{{\gamma _{{\rm{32}}}} = {\rm{1}}{\rm{.8}}} \end{array}$
RMSE 0.118 0 0.179 9 0.142 4 0.172 1 0.110 1 0.099 0 0.170 7 0.099 6 0.084 1 0.071 8
PLCC 0.879 0 0.738 9 0.845 9 0.764 6 0.911 1 0.928 7 0.768 9 0.928 7 0.949 2 0.963 2
SROCC 0.913 0 0.767 6 0.922 1 0.908 9 0.928 9 0.945 3 0.753 0 0.941 1 0.937 2 0.958 8
tid2013
$\begin{array}{*{20}{c}} {{\gamma _{{\rm{11}}}} = 0.{\rm{28}}}&{{\gamma _{{\rm{12}}}} = 0.{\rm{8}}} \\ {{\gamma _{{\rm{21}}}} = {\rm{1}}{\rm{.4}}}&{{\gamma _{{\rm{22}}}} = {0}{\rm{.000\;1}}} \\ {{\gamma _{{\rm{31}}}} = {\rm{4}}{\rm{.0}}}&{{\gamma _{{\rm{32}}}} = {\rm{100}}{\rm{.0}}} \end{array}$
RMSE 0.766 9 1.217 1 0.974 9 0.971 7 0.710 8 0.678 1 0.933 0 0.692 8 0.704 2 0.636 0
PLCC 0.782 3 0.150 5 0.610 7 0.802 4 0.816 5 0.834 6 0.652 5 0.826 6 0.820 3 0.856 2
SROCC 0.788 8 0.513 9 0.609 5 0.796 6 0.796 8 0.889 0 0.632 7 0.802 6 0.750 7 0.802 9
Tab.3 Assessment results comparison between proposed DPPNNP and other methods on databases CSIQ and tid2013
Fig.3 Scatter distribution plot of various methods
评价方法 t/s 评价方法 t/s
MSSIM 171 IFC 2 020
SVD 238 VIF 2 083
VSI 484 IGM 39 194
FSIM 653 DPPNNP 21 127
MAD 3 128
Tab.4 Test results comparisons of time complexity for different image quality assessment methods
[1]   GUO Y C, HAO Y T, YU M Image retargeting quality assessment based on content deformation measurement[J]. Signal Processing: Image Communication, 2018, 67 (6): 171- 181
[2]   CHEN Z B, LIN J X, LIAO N, et al Full reference quality assessment for image retargeting based on natural scene statistics modeling and bi-directional saliency similarity[J]. IEEE Transactions on Image Processing, 2017, 26 (11): 5138- 5148
doi: 10.1109/TIP.2017.2736422
[3]   ZHANG Y CH, KING N N, MA L, et al Objective quality assessment of image retargeting by incorporating fidelity measures and inconsistency detection[J]. IEEE Transactions on Image Processing, 2017, 26 (11): 5980- 5993
[4]   ZHANG Y B, LIN W S, LI Q H, et al Multiple-level feature-based measure for retargeted image quality[J]. IEEE Transactions on Image Processing, 2018, 27 (1): 451- 463
doi: 10.1109/TIP.2017.2761556
[5]   丰明坤, 王中鹏, 叶绿 视觉稀疏化多通道多特征自适应的图像评价[J]. 仪器仪表学报, 2016, 37 (3): 667- 674
FENG Ming-kun, WANG ZHong-peng, YE Lv Image quality assessment based on adaptive sparse visual multi-channel and multi-feature pooling[J]. Chinese Journal of Scientific Instrument, 2016, 37 (3): 667- 674
doi: 10.3969/j.issn.0254-3087.2016.03.025
[6]   BAMPIS C G, GUPTA P, SOUNDARARAJAN R, et al SpEED-QA: patial efficient entropic differencing for image and video quality[J]. IEEE Signal Processing Letters, 2017, 24 (9): 1333- 1337
doi: 10.1109/LSP.2017.2726542
[7]   NI ZH K, MA L, ZENG H Q, et al Gradient direction for screen content image quality assessment[J]. IEEE Signal Processing Letters, 2016, 23 (10): 1394- 1398
doi: 10.1109/LSP.2016.2599294
[8]   KIM J, ZENG H, GHADIYARAM D, et al Deep convolutional neural models for picture-quality prediction: challenges and solutions to data-driven image quality assessment[J]. IEEE Signal Processing Magazine, 2017, 34 (6): 130- 141
doi: 10.1109/MSP.2017.2736018
[9]   GHADIYARAM D, BOVIK A. C Massive online crowdsourced study of subjective and objective picture quality[J]. IEEE Transactions on Image Process, 2016, 25 (1): 372- 387
doi: 10.1109/TIP.2015.2500021
[10]   LARSON E C, CHANDLER D M Most apparent distortion: full-reference image quality assessment and the role of strategy[J]. Journal of Electronic Imaging, 2010, 19 (1): 011006-1- 011006-21
[11]   ZHANG L, ZHANG L, MOU X Q, et al FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20 (8): 2378- 2386
doi: 10.1109/TIP.2011.2109730
[12]   ZHANG L, SHEN Y LI H Y VSI: a visual saliency-induced index for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2014, 23 (10): 4270- 4281
doi: 10.1109/TIP.2014.2346028
[13]   DING Y, WANG SH Z, ZHANG D Full-reference image quality assessment using statistical local correlation[J]. Electronics Letters, 2014, 50 (2): 79- 81
doi: 10.1049/el.2013.3365
[14]   WU J J, LIN W S, SHI G M Perceptual quality metric with internal generative mechanism[J]. IEEE Transactions on Image Processing, 2013, 22 (1): 43- 54
doi: 10.1109/TIP.2012.2214048
[15]   丰明坤, 赵生妹, 邢超 基于视觉显著失真度的图像质量自适应评价方法[J]. 电子与信息学报, 2015, 37 (9): 2062- 2068
FENG Ming-kun, ZHAO SHeng-mei, XING CHao Image quality self-adaptive assessment based on visual salience distortion[J]. Journal of Electronics & Information Technology, 2015, 37 (9): 2062- 2068
[16]   丰明坤, 赵生妹, 施祥 视觉多通道梯度与低阶矩自适应图像评价[J]. 仪器仪表学报, 2015, 36 (11): 2531- 2537
FENG Ming-kun, ZHAO SHeng-mei, SHI Xiang Adaptive image quality assessment based on visual multi-channel gradient and low order moment[J]. Chinese Journal of Scientific Instrument, 2015, 36 (11): 2531- 2537
doi: 10.3969/j.issn.0254-3087.2015.11.017
[17]   WANG ZH, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612
doi: 10.1109/TIP.2003.819861
[18]   WANG ZH, LU L G, BOVIK A C Foveation scalable video coding with automatic fixation selection[J]. IEEE Transactions on Image Processing, 2003, 12 (2): 243- 254
doi: 10.1109/TIP.2003.809015
[19]   LIU A M, LIN W S, NARWARIA M Image quality assessment based on gradient similarity[J]. IEEE Transaction on Image Processing, 2012, 21 (4): 1500- 1512
doi: 10.1109/TIP.2011.2175935
[20]   GAO X B, LU W, TAO D CH, et al Image quality assessment based on multiscale geometric analysis[J]. IEEE Transactions on Image Processing, 2009, 18 (7): 1409- 1423
doi: 10.1109/TIP.2009.2018014
[21]   林志洁, 丰明坤 深度视觉特征与策略互补融合的图像质量评价[J]. 模式识别与人工智能, 2017, 30 (8): 682- 691
LIN ZHi-jie, FENG Ming-kun Image quality assessment based on complementary pooling of deeply visual feature and strategy[J]. Pattern Recognition and Artificial Intelligence, 2017, 30 (8): 682- 691
[22]   SHNAYDERMAN A, GUSEV A, ESKICIOGLU A M An SVD-based grayscale image quality measure for local and global assessment[J]. IEEE Transactions on Image Processing, 2006, 15 (2): 422- 429
doi: 10.1109/TIP.2005.860605
[23]   HU A ZH, ZHANG R YIN D, et al Image quality assessment using an SVD-based structural projection[J]. Signal Processing: Image Communication, 2014, 29 (3): 293- 302
doi: 10.1016/j.image.2014.01.007
[24]   WANG ZH, SIMONCELLI E P, BOVIK A C. Multi-scale structural similarity for image quality assessment [C]// Proceedings of the 37th IEEE Asilomar Conference on Signals, Systems and Computers. Pacific Grove: IEEE, 2002(2): 1398–1402.
[25]   SHEIKH H R, BOVIK A C, VECIANA G D An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14 (12): 2117- 2128
doi: 10.1109/TIP.2005.859389
[1] Xu-ming SU,Cheng-gang FANG,Yu-bin PAN,Wei-wei WU,Ya-ping LI,Lang ZHU. Modeling error of visual measurement system under changing illuminance[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1929-1935.
[2] XIE Jie, HUANG Xiao-diao, FANG Cheng-gang, ZHOU Bao-cang, LU Ning. Thermal characteristics and thermal error modeling analysis for motorized spindle of gear grinding machine tool[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 247-254.
[3] MENG Jun, DENG Xiao-yu, YU Jie-zhou. Postoperative survival prediction model of BP neural network with variable cluster[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2365-2371.
[4] WU Jiang hong, XUE Zhi qiang, JIN Peng, LI Hui xi. Temperature maldistribution in micro-channel heat exchanger applied to electrical vehicle’s heat pump air conditioning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1537-1544.
[5] LIU Lei, YANG Peng,LIU Zuo-jun1. Lower limb locomotion-mode identification based on multi-source information and particle swarm optimization algorithm[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 439-447.
[6] HUANG Xiao-shuo,HE Yan,JIANG Jing-ping. Internet based control strategy for brushless DC motor drive systems    [J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 831-836.
[7] WANG Xiang, DING Yong. Full reference image quality assessment based on Gabor filter[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 422-430.
[8] TONG Shui-guang, WANG Xiang-bing, ZHONG Wei, ZHANG Jian. Dynamic optimization design for rigid landing leg of crane
based on BP-HGA
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 122-130.
[9] WANG De-ming, WANG Li,ZHANG Guang-ming. Short-term wind speed forecast model for wind farms based on
genetic BP neural network
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 837-841.
[10] ZHAO Zhen, ZHANG Shu-you. Hybrid current model of breaking cycle and its application[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 301-308.
[11] LOU Bin, CHEN Hai-Bin, DIAO Wu-Feng, et al. No-reference image quality assessment based on statistical model of natural image[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 248-252.
[12] LOU Bin, CHEN Hai-Bin, DIAO Wu-Feng, et al. Structural similarity image quality assessment based on distortion model[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 864-868.
[13] XU Jing-hua, ZHANG Shu-you. Shape retrieval method of 3D models based on shape  distribution graph and BP neural network[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 877-883.