Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2019, Vol. 53 Issue (1): 40-50    DOI: 10.3785/j.issn.1008-973X.2019.01.005
Civil Engineering     
Triaxial test study of reactive powder concrete with different sizes under different friction reducing conditions
WANG Zhe, WU Li-cheng
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
Download:   PDF(2147KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cylinder specimens of plain reactive powder concrete (RPC) with a constant diameter of 43.6 mm and with four length-diameter ratios (0.5, 1, 2 and 3) were tested by monotonic growth of axial compressive strain under a designed confining pressure. Then the conventional triaxial test was conducted. Three friction reducing conditions, which used none friction reducing material (called condition A), 2 layers of polytetrafluoroethylene film with 0.1 mm thickness (called condition B) and 3 layers of polytetrafluoroethylene film (0.1 mm thickness) with lubricating grease between films (called condition C), were adopted at each end of the specimen. Each confining pressure represented a loading path. When the length-diameter ratios of the specimen were 0.5, 1.0 and 3.0, the specimen were tested under two different confining pressures (5 MPa and 70 MPa). When the length-diameter ratio was 2.0, there were 5 different confining pressures (0 MPa, 5 MPa, 20 MPa, 35 MPa and 70 MPa). The test results show that the strength and failure mode of the specimen with condition B is similar to those of the specimen with condition C under same confining pressure and same length-diameter ratio. The compressive strength of specimen with condition A and condition C shows different trend with varied length-diameter ratio when the confining pressure is 5 MPa and the length-diameter ratio is less than 2.0. The specimen with condition A shows an obvious size effect on compressive strength when the confining pressure is 70 MPa, while the effect is not found among the specimens with condition C. It is obvious that confining pressure can restrain the development of crack.



Received: 01 January 2018      Published: 07 January 2019
CLC:  TU528  
Cite this article:

WANG Zhe, WU Li-cheng. Triaxial test study of reactive powder concrete with different sizes under different friction reducing conditions. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 40-50.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.01.005     OR     http://www.zjujournals.com/eng/Y2019/V53/I1/40


不同减摩条件下变长度活性粉末混凝土的三轴试验研究

使用常规三轴实验,对同一直径(43.6 mm)、4种长径比(0.5、1、2和3)的素活性粉末混凝土(RPC)圆柱试样,在保持围压恒定的条件下单调地施加轴向压缩应变. 试样两端采用3种减摩条件:直接与金属压头接触(条件A),分别垫有2层0.1 mm厚聚四氟乙烯薄膜(条件B),分别垫有层间涂润滑脂的3层0.1 mm厚聚四氟乙烯薄膜(条件C). 每一档围压对应一种加载路径:长径比为0.5、1.0和3.0的试样,采用两档围压(5、70 MPa);长径比为2.0的试样,采用5档围压(0、5、20、35、70 MPa). 试验结果表明:在同围压、同长径比的条件下,条件B试样与条件C试样的强度及破坏模式相近;当围压为5 MPa,长径比小于2.0时,不同长径比的条件A试样与条件C试样在抗压强度上均有明显差异,但这2种减摩条件所表现的强度与长径比之间关系正好相反;当围压为70 MPa时,条件A试样的抗压强度有尺寸效应,条件C试样无显著的尺寸效应. 围压的增加显著地约束了裂纹的扩展.

[1] 苏捷, 方志. 普通混凝土与高强混凝土抗压强度的尺寸效应[J]. 建筑材料学报, 2013, 16(6):1078-1081 SU Jie, FANG Zhi. Scale effect on cubic compressive strength of ordinary concrete and high-strength concrete[J]. Journal of Building Materials, 2013, 16(6):1078-1081
[2] 惠弘毅, 李宗利, 杨华, 等. 不同强度等级混凝土尺寸效应试验研究[J]. 混凝土, 2015(7):31-34 XI Hong-yi, LI Zong-li, YANG Hua, et al. Experimental study on impact of strength grade on size effect of concrete strength[J]. Concrete, 2015(7):31-34
[3] 周红. 混凝土强度尺寸效应的实验研究[D]. 大连:大连理工大学, 2010. ZHOU Hong. Experiment study on size effect on concrete strength[D]. Dalian:Dalian University of Technology, 2010.
[4] 唐欣薇, 石建军, 郭长青, 等. 自密实混凝土强度尺寸效应的试验与数值仿真[J]. 水力发电学报, 2011, 30(3):145-151 TANG Xin-wei, SHI Jian-jun, GUO Chang-qing, et al. Test and numerical simulation of size effect on the strength of self-compacting concrete[J]. Journal of Hydroelectric Engineering, 2011, 30(3):145-151
[5] NEVILLE A M. The influence of size of concrete test cubes on mean strength and standard deviation[J]. Magazine of Concrete Research, 1956, 8(23):101-110.
[6] 刘数华, 阎培渝, 冯建文. 超高强混凝土RPC强度的尺寸效应[J]. 公路, 2011(3):123-127 LIU Shu-hua, YAN Pei-yu, FENG Jian-wen. Size effect on strength of ultra-high strength concrete RPC[J]. Highway, 2011(3):123-127
[7] 秦子鹏, 杜应吉, 田艳. 高强活性粉末混凝土尺寸效应的研究[J]. 中国农村水利水电, 2013(9):92-94 QIN Zi-peng, DU Ying-ji, TIAN Yan. A study of the size effect of high-strength reactive powder concrete[J]. China Rural Water and Hydropowder, 2013(9):92-94
[8] AN Ming-zhe, ZHANG Li-jun, YI Quan-xin. Size effect on compressive strength of reactive powder concrete[J]. International Journal of Mining Science and Technology, 2008, 18(2):279-282.
[9] RICHARD P, CHEYREZY M. Reactive powder concretes with high ductility and 200-800 MPa compressive strength[J]. Aci Special Publication, 1994, 114(24):507-518.
[10] 余自若, 秦鑫, 安明喆. 活性粉末混凝土的常规三轴压缩性能试验研究[J]. 中国铁道科学, 2012, 33(2):40-44 YU Zi-ruo, QIN Xin, AN Ming-zhe. Experimental research on the conventional triaxial compressive properties of reactive powder concrete[J]. China Railway Science, 2012, 33(2):40-44
[11] KIM J K, EO S H, PARK H K. Size effect in concrete structures without initial crack[C]//Fracture Mechanics:Application to Concrete, SP-118. Detroit:ACI, 1989:179-196.
[12] KIM J K. Size effect in concrete specimens with dissimilar initial cracks[J]. Magazine of Concrete Research, 1990, 42(153):233-238.
[13] BA?ANT Z P. Fracture energy of heterogeneous materials and similitude[M]//Fracture of concrete and rock. New York:Springer, 1989:229-241.
[14] BA?ANT Z P. Size effect in compression and tensile quasibrittle fracture[J]. Journal of the Mechanical Behavior of Materials, 2000, 11(1-3):7-12.
[15] BA?ANT Z P, XIANG Y. Size effect in compression fracture:splitting crack band propagation[J]. Journal of Engineering Mechanics, 1997, 123(123):162-172.
[16] KIM J K, YI S T, PARK C K, et al. Size effect on compressive strength of plain and spirally reinforced concrete cylinders[J]. ACI Structural Journal, 1999, 96(1):88-94.

[1] SONG Ying-bin, XU Jin-xia, JIANG Lin-hua, TAN Qi-ping, MEI You-jing. Anti-corrosion performance of NO3-/NO2- intercalation of MgAl-LDHs in simulated concrete pore solution[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2397-2405.
[2] TIAN Shuai-qi, ZHANG Qing-yu, WANG Ke, FAN Li-wu, YU Zi-tao, GE Jian. Effect of sample size on transient measurement of water vapor diffusion coefficient[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2077-2082.
[3] WANG Wei, LIU Ou, CAO Kun, XU Zhi-sheng. Meso damage evolution of tunnel lining concrete under fire[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 906-913.
[4] WANG Ji-yang, MA Wei-qiang, HU Zhi-hua, WAN Cheng-lin. Effect of PE fiber content on mechanical behavior of cementitious composite[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2130-2135.
[5] LI Ben-ben, JIANG Jia-fei, DOU Xiang-xiang, XIAO Ping-cheng. New true-triaxial test apparatus with passive confinement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1688-1694.
[6] XUE Feng-Fei, XIANG Yi-Jiang. Corrected diffusion model of chloride in concrete and
its engineering application
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 831-.
[7] LEI Zhen-Yong, JIN Wei-Liang, WANG Hai-Long, et al. Similar design on accelerated test of artificial climate simulation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1071-1076.