Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (11): 2077-2082    DOI: 10.3785/j.issn.1008-973X.2018.11.005
Civil and Hydraulic Engineering     
Effect of sample size on transient measurement of water vapor diffusion coefficient
TIAN Shuai-qi1, ZHANG Qing-yu1, WANG Ke1, FAN Li-wu1, YU Zi-tao1, GE Jian2
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China;
2. Institute of Building Technology, Zhejiang University, Hangzhou 310058, China
Download:   PDF(843KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The transient experiments of water vapor diffusion coefficient in the lengthwise direction of B04 autoclave aerated concrete (AAC) samples were performed to reveal the effect of sample size on transient measurement of water vapor diffusion coefficient. The axial sample lengths were 120, 150, 200 and 250 mm, respectively, while maintaining a constant cross-sectional area of 50 mm×50 mm. Results of steady-state and transient measurements were compared. Results showed that the transient results increased along with the decrease of the samples' length. The transient results of the 120 mm sample were slightly higher than the steady-state measurements while the maximum deviation was less than 10% when the relative humidity was higher than 50%, and the measurement time was 24 h. The transient results of the 150 mm sample had the best agreement with the steady-state results with an overall deviation of less than 13%, and the measurement time was 36 h. The transient results of 200 mm and 250 mm samples were apparently lower than the steady-state results, while the maximum deviation was greater than 25%, and the measurement time was longer than 60 h. According to the results, the sample length of 150 mm is recommended for the transient measurements on the water vapor diffusion coefficient of this type of AAC.



Received: 14 September 2017      Published: 22 November 2018
CLC:  TU528  
Cite this article:

TIAN Shuai-qi, ZHANG Qing-yu, WANG Ke, FAN Li-wu, YU Zi-tao, GE Jian. Effect of sample size on transient measurement of water vapor diffusion coefficient. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2077-2082.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.11.005     OR     http://www.zjujournals.com/eng/Y2018/V52/I11/2077


试样尺寸对水蒸气扩散系数瞬态测试的影响

为了分析试样尺寸对水蒸气有效扩散系数瞬态测试结果的影响,利用瞬态法测试底面积为50 mm×50 mm,长度分别为120、150、200、250 mm的4种B04级加气混凝土试样沿长度方向的水蒸气有效扩散系数,比较实验结果与采用标准稳态法的测试结果.结果表明,随着试样尺寸的增长,水蒸气有效扩散系数的瞬态测试值逐渐降低.长度为120 mm试样的瞬态测试值略高于稳态测试值,相对湿度高于50%时的最大偏差不超过10%,耗时为24 h;长度为150 mm试样的瞬态测试值与稳态测试值在整体上最为接近,在整个相对湿度区间的最大偏差不超过13%,测试耗时为36 h;长度为200、250 mm试样的瞬态测试值比稳态测试值显著偏低,最大偏差超过25%,耗时均超过60 h.根据测试结果,建议采用长度约为150 mm的试样对该型加气混凝土的水蒸气扩散系数进行瞬态测试.

[1] KIM H J, KIM S S, LEE Y G, et al. The hygric performances of moisture adsorbing/desorbing building materials[J]. Aerosol and Air Quality Research, 2010, 10(6):625-634.
[2] 张华玲, 刘朝, 付祥钊. 多孔墙体湿分传递与室内热湿环境研究[J]. 暖通空调, 2006, 36(10):29-34 ZHANG Hua-ling, LIU Chao, FU Xiang-zhao. Study on moisture transfer in porous building components and indoor environment[J]. Journal of Heating, Ventilating and Air Conditioning, 2006, 36(10):29-34
[3] STAF R, PRABAL T, CHRIS J, et al. Reliability of material data measurements for hygroscopic buffering[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24):5355-5363.
[4] ISO. Hygrothermal performance of building materials and products:determination of water vapor transmission properties:ISO 12572-2001[S]. Geveno:ISO, 2001:7-9.
[5] ISO. Hygrothermal performance of building materials and products:determinations of hygroscopic sorption properties:ISO 12571-2000[S]. Geveno:ISO, 2000:4-6.
[6] 周晓燕, 彭秋云. 定向结构板内水蒸气稳态扩散系数的研究[J]. 林产工业, 2001, 28(6):13-14 ZHOU Xiao-yan, PENG Qiu-yun. Study on steady-state diffusion coefficient of vapour in OSB[J]. China Forest Products Industry, 2001, 28(6):13-14
[7] PAVLIK Z, ZUMAR J, PAVLIKNOVA M, et al. A Boltzmann transformation method for investigation of water vapor transport in building materials[J]. Journal of Building Physics, 2012, 35(3):213-223.
[8] 易思阳, 金虹庆, 范利武, 等. 多孔建筑材料水蒸气扩散系数的瞬态测试方法[J]. 浙江大学学报:工学版, 2016, 50(1):16-21 YI Si-yang, JIN Hong-qing, FAN Li-wu, et al. Transient determination of water vapor diffusion coefficient of porous building materials[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(1):16-21
[9] YI S Y, FAN L W, FU J H, et al. Experimental determination of the water vapor diffusion coefficient of autoclaved aerated concrete (AAC) via a transient method:effects of the porosity and temperature[J]. International Journal of Heat and Mass Transfer, 2016, 103:607-610.
[10] 国家建筑材料工业局. 蒸压加气混凝土砌块标准:GB 11968-2006[S]. 北京:中国标准出版社, 2006:1-3.
[11] ASTM. Standard test method for density, absorption, and voids in hardened concrete:ASTM C642[S]. Philadelphia:ASTM, 2001:1-3.
[12] 中国煤炭工业协会. 煤和岩石物理力学性质测定方法第2部分:煤和岩石真密度测定方法:GB/T23561[S]. 北京:中国标准出版社, 2009:1-3.
[13] DIAZ J, RABNANL F, NIETO P, et al. Experimental study of hygrothermal properties of lightweight concrete:experiments and numerical fitting study[J]. Construction and Building Materials, 2013, 40(3):543-555.
[14] ASTM. Standard test method for water vapor transmission of materials:ASTM E96/E96M-2005[S]. Philadelphia:ASTM, 2005:3-7.
[15] 冯驰, 吴晨晨, 冯雅, 等. 干燥方法和试件尺寸对加气混凝土等温吸湿曲线的影响[J]. 建筑材料学报, 2014, 17(1):132-137 FENG Chi, WU Chen-chen, Feng Ya, et al. Effect of drying methods and sample sizes on moisture absorption isotherms of aerated concrete[J]. Journal of Building Materials, 2014, 17(1):132-137

[1] WANG Zhe, WU Li-cheng. Triaxial test study of reactive powder concrete with different sizes under different friction reducing conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 40-50.
[2] SONG Ying-bin, XU Jin-xia, JIANG Lin-hua, TAN Qi-ping, MEI You-jing. Anti-corrosion performance of NO3-/NO2- intercalation of MgAl-LDHs in simulated concrete pore solution[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2397-2405.
[3] WANG Wei, LIU Ou, CAO Kun, XU Zhi-sheng. Meso damage evolution of tunnel lining concrete under fire[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 906-913.
[4] WANG Ji-yang, MA Wei-qiang, HU Zhi-hua, WAN Cheng-lin. Effect of PE fiber content on mechanical behavior of cementitious composite[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2130-2135.
[5] LI Ben-ben, JIANG Jia-fei, DOU Xiang-xiang, XIAO Ping-cheng. New true-triaxial test apparatus with passive confinement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1688-1694.
[6] XUE Feng-Fei, XIANG Yi-Jiang. Corrected diffusion model of chloride in concrete and
its engineering application
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 831-.
[7] LEI Zhen-Yong, JIN Wei-Liang, WANG Hai-Long, et al. Similar design on accelerated test of artificial climate simulation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1071-1076.