Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (6): 1068-1072    DOI: 10.3785/j.issn.1008-973X.2018.06.004
Computer and Communication Technolog     
Design of extremely low power sigma-delta modulator based on cascode inverter
CHEN Cheng-ying, CHEN Li-ming, HUANG Xin-dong, ZHANG Hong-yi
School of Microelectronics, Xiamen University of Technology, Fujian 361024, China
Download:   PDF(2327KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A 14 bit/500 Hz Sigma-Delta modulator was presented based on cascode inverter to meet the low power, high resolution application requirement of wearable medical device. In low power supply, the bootstrap switch was adopted to complete accurate signal sampling. And instead of using a transconductor operational amplifier (OTA), the Sigma-Delta modulator was constituted with cascode inverter to reduce power consumption. The circuit was implemented in SMIC 0.13 μm 1P8M Mixed-signal process. The measurement results show that in 0.6 V power supply with 500 Hz signal bandwidth and 256 kHz clock frequency, the maximum signal to noise and distortion ratio (SNDR) is 69.7 dB and the efficient number of bit (ENOB) is 11.3 bit with 5.07 μW power consumption.



Received: 22 January 2017      Published: 20 June 2018
CLC:  TN432  
Cite this article:

CHEN Cheng-ying, CHEN Li-ming, HUANG Xin-dong, ZHANG Hong-yi. Design of extremely low power sigma-delta modulator based on cascode inverter. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1068-1072.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.06.004     OR     http://www.zjujournals.com/eng/Y2018/V52/I6/1068


基于共源共栅反相器的极低功耗Sigma-Delta调制器设计

为了满足穿戴式医疗设备中低功耗、高精度的模数转换应用需求,设计一种基于共源共栅反相器的低功耗14 bit/500 Hz Sigma-Delta调制器电路.在低电源电压环境下,该电路采用栅压自举开关完成了高精度的信号采样.利用共源共栅反相器替换传统Sigma-Delta调制器的跨导放大器(DTA),有效降低了电路功耗.电路采用SMIC 0.13 μm 1P8M 混合信号工艺实现,测试结果表明,在供电电压为0.6 V、时钟频率为256 kHz、信号带宽为500 Hz内,Sigma-Delta调制器输出信号最大信噪失真比为69.7 dB,有效精度为11.3 bit,功耗仅为5.07 μW.

[1] WANG Y C, KE K R, QIN W H, et al. A low power low noise analog front end for portable healthcare system[J]. Journal of Semiconductors, 2015, 36(10):105008-7.
[2] MAO Y Q, GAO T Q, XU X D, et al. A fully integrated CMOS super-regenerative wake-up receiver for EEG applications[J]. Journal of Semiconductors, 2016,37(9):095001-6.
[3] XIAO G L, QIN Y L, XU W L, et al. Demonstration of a fully differential VGA chip with small THD for ECG acquisition system[J]. Journal of Semiconductors, 2015, 36(10):105005-6.
[4] DUAN J H, LAN C, XU W L, et al. An OTA-C filter for ECG acquisition systems with highly linear range and less passband attenuation[J]. Journal of Semiconductors, 2015, 36(5):055006-6.
[5] DAI L, LIU W K, LU Y, et al. A 410μW, 70 dB SNR high performance analog front-end for portable audioapplication[J]. Journal of Semiconductors, 2014,35(10):105013-6.
[6] PU X F, WAN L, ZHANG H, et al. A low-power portable ECG sensor interface with dry electrodes[J]. Journal of Semiconductors, 2013, 34(5):055002-6.
[7] PUN K P, CHATTERJEE S, KINGET P. A 0.5-V 74-dB SNDR 25kHz CT Sigma-Delta modulator withreturn-to-open DAC[J]. IEEE Journal of Solid-StateCircuits, 2007, 42(3):496-507.
[8] MURMANN B, BOSER B. A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification[J]. IEEE Journal of Solid-State Circuits, 2003, 38(12):2040-2050.
[9] SIGRAGUSA E, GALTON I. A digitally enhanced 1.8-V 15-bit 40-MSample/s CMOS pipelined ADC[J]. IEEE Journal of Solid-State Circuits, 2004, 39(12):2126-2138.
[10] FIORENZA J K, SEPKE T, HOLLOWAY P, et al. Comparator-based switch-capacitor circuits for scaled CMOS technologies[J]. IEEE Journal of Solid-State Circuits, 2006, 41(12):2658-2668.
[11] CHAE Y, HAN G. A low power sigma-delta modulator using class-C inverter[C]//2007 IEEE Symposium on Vlsi Circuits. Kyoto:IEEE, 2007:240-241.
[12] CHAE Y, LEE I, HAN G. A 0.7-V 36-μW 85dB-DR audio Sigma-Delta modulator using class-C inverter[C]//2008 IEEE Solid-State Circuits Conference. San Francisco:IEEE, 2008:490-491.
[13] CHAE Y, HAN G. Low voltage, low power, inverter-based switch-capacitor delta-sigma modulator[J]. IEEE Journal of Solid-State Circuits, 2009,44(2):458-471.
[14] ANDREW M, GRAY P R. A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter[J]. Journal of Solid-State Circuits,1999,34(5):599-603.
[15] ABIRI E, POUMOORI N. A 0.5-V 17μW second-order Delta-Sigma modulator based on a self-biased digital inverter in 0.13μm CMOS[J]. Journal of Basic and Applied Scientific Rearch, 2012,2(4):3476-3480.
[16] MICHAEL F, STEYAERT M. A 250 mV 7.5μW 61dB SNDR SC Sigma-Delta modulator using near-threshold-voltage-biased inverter amplifier in 130 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2012, 47(3):709-721.
[17] YANG Y, YANG Y, LU L, et al. Inverter-based second-order Sigma-Delta modulator for smart sensor[J]. Electronics letters, 2013. 49(7):31-32.
[18] YOON Y, ROH H, ROH J. A true 0.4 V Delta-Sigma modulator using a mixed DDA integrator without clock boosted switches[J]. IEEE Transactions on Circuits and Systems-Ⅱ:Express Briefs, 2014, 61(4):229-233.

[1] ZHU Tao-tao, XIANG Xiao-yan, CHEN Chen, MENG Jian-yi, YAN Xiao-lang. Timing error resilient clock gate design for wide-voltage application[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1796-1803.
[2] LEI Yu, CHEN Hou-peng, WANG Qian, LI Xi, HU Jia-jun, SONG Zhi-tang. Pre-charge read scheme for phase change memory[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 531-536.
[3] HU Xiao-Hui, ZHANG Hui-Xi, CHEN Ji-Zhong. Design of low power priority coder based on multi-threshold technique[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 860-863.