Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (5): 906-913    DOI: 10.3785/j.issn.1008-973X.2018.05.010
Civil and Traffic Engineering     
Meso damage evolution of tunnel lining concrete under fire
WANG Wei, LIU Ou, CAO Kun, XU Zhi-sheng
School of Civil Engineering, Central South University, Changsha 410075, China
Download:   PDF(2063KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The heterogeneity of concrete structure needs to be considered for the study of concrete damage, in order to objectively reflect the essence of the high temperature damage of concrete. A numerical model was established to analyze the meso-damage process of concrete under thermal mechanical coupling combined with meso-damage mechanics.The model considered the stress state at the top of the tunnel lining. The mechanical behavior and damage process of tunnel lining concrete in the course of fire were analyzed.Results show that the influence of fire on the mechanical properties and damage evolution process of tunnel lining concrete is significant, and the mechanical properties of the interface determine the differences in macroscopic strength. The cumulative equivalent burning loss depth of tunnel lining concrete under the RABT fire loading shows curve variation based on the strength equivalence theory. In the meso-scale numerical simulation, there is a good linear relationship between the damage unit ratio and the equivalent burning loss depth.



Received: 11 April 2017      Published: 07 November 2018
CLC:  TU528  
Cite this article:

WANG Wei, LIU Ou, CAO Kun, XU Zhi-sheng. Meso damage evolution of tunnel lining concrete under fire. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 906-913.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.05.010     OR     http://www.zjujournals.com/eng/Y2018/V52/I5/906


火灾下隧道衬砌混凝土细观损伤演化

为了客观地反映火灾下衬砌混凝土高温损伤的本质,需要考虑混凝土结构特性的不均匀性.结合细观损伤力学,建立混凝土热力耦合作用下衬砌混凝土细观损伤过程的数值模型,该模型考虑了隧道衬砌结构顶部的受力状态,可以研究隧道衬砌混凝土在火灾过程中的力学行为与损伤过程.研究结果表明,火灾对隧道衬砌混凝土的力学性质和损伤演化过程影响显著,界面的力学特性决定宏观强度的差异;基于强度等效理论,隧道衬砌混凝土在RABT火灾荷载下的累积等效烧损深度呈曲线变化;细观数值模拟下损伤单元比例与等效烧损深度存在较好的线性关系.

[1] LUCCIONI B M, FINGUEROA M I, DANNESI R E. Thermomechanic model for concrete exposed to elevated temperature[J]. Engineering Structures, 2003. 25:729-742.
[2] GAWIN D, PESAVENTO F, SCHREFLER B A. Modelling of hygrothermal behaviour of concrete at high temperature with thermochemical and mechanical material degradation[J]. Computer Methods in Applied Mechanics & Engineering, 2003, 192(13):1731-1771.
[3] 过镇海.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003:10-65.
[4] 闫治国,朱合华,梁利.火灾高温下隧道衬砌管片力学性能试验[J].同济大学学报:自然科学版,2012,40(6):823-828. YAN Zhi-guo, ZHU He-hua, LIANG Li. Experimental study on mechanical performance of lining segment in fire accidents[J]. Journal of Tongji University:Natural Science, 2012, 40(6):823-828.
[5] 黄涛,王珍,张泽江.公路隧道衬砌高性能混凝土的高温烧损试验研究[J].中国矿业大学学报,2012,41(1):142-147. HUANG Tao, WANG Zhen, ZHANG Ze-jiang. Experimental research on the high-temperature buring of a highway tunnel lining made from high performance concrete[J]. Journal of China University of Mining & Technology, 2012, 41(1):142-147.
[6] 李朝红,王海龙,徐光兴.混凝土损伤断裂的三维细观数值模拟[J].中南大学学报自然科学版,2011,42(2):463-469. LI Chao-hong, WANG Hai-long, XU Guang-xing. 3-D mesoscopic numerical simulation of concrete damage and fracture[J]. Journal of Central South University:Science and Technology, 2011, 42(2):463-469.
[7] 白卫峰,管俊峰,崔莹,等.混凝土双轴压-压细观统计损伤本构模型[J].四川大学学报:工程科学版,2013, 45(6):74-81. BAI Wei-feng, GUAN Jun-feng, CUI Ying, et al. Staistical damage constitutive model concrete under biaxial compression[J]. Journal of Sichuan University:Engineering Science Edition, 2013, 45(6):74-81.
[8] 刘庭金,莫海鸿,朱合华.非均质混凝土细观数值模型及其在双边裂纹加载中的应用[J].华南理工大学学报:自然科学版,2005,33(10):52-56. LIU Ting-jin, MO Hai-hong, ZHU He-hua. Mesoscopic numerical model of heterogeneous concrete and its application in bilateral crack loading[J]. Journal of South China University of Technology:Natural Science Edition, 2005, 33(10):52-56.
[9] 马怀发,陈厚群,阳昌陆.复杂动荷载作用下全级配混凝土损伤机理细观数值试验[J].土木工程学报,2012(7):175-182. MA Huai-fa, CHEN Hou-qun, YANG Chang-lu. Mesoscopic numerical model of heterogeneous concrete and its application in bilateral crack loading[J]. China Civil Engineering Journal, 2012(7):175-182.
[10] 李冬,金浏,杜修力.钢筋混凝土柱轴心受压性能及尺寸效应的细观数值研究[J].水利学报,2016,47(2):209-218. LI Dong, JIN Liu, DU Xiu-li. Meso numerical study on axial compression behavior and size effect of reinforced concrete columns[J]. Journal of Hydraulic Engineering, 2016, 47(2):209-218.
[11] DOUGIL J W. On stable progressively fracturing solid[J]. Journal of Applied Mathematics and Physics, 1976, 27(4):23-437.
[12] 李灏.损伤力学基础[M].济南:山东科学技术出版社,1992:43-90.
[13] 唐世斌,唐春安,梁正召,等.混凝土热传导与热应力的细观特性及热开裂过程研究[J].土木工程学报,2012(2):11-19. TANG Shi-bing, TANG Chun-an, LIANG Zheng-zhao, et al. Study on the micro characteristics and thermal cracking process of heat conduction and thermal stress in concrete[J]. China Civil Engineering Journal, 2012(2):11-19.
[14] 龚正炉.基于随机骨料模型的混凝土性能多尺度数值模拟研究[D].杭州:浙江大学,2013. GONG Zheng-lu. Multi-scale numerical simulation research of concrete based on random aggregate[D]. Hangzhou:Zhejiang University, 2013.
[15] 肖建庄,杜江涛,刘琼.基于格构模型再生混凝土单轴受压数值模拟[J].建筑材料学报,2009,12(5):511-514. XIAO Jian-zhuang, DU Jiang-tao, LIU Qiong. Numerical simulation of recycled concrete under uniaxial compression based on lattice model[J]. Journal of Building Materials, 2009, 12(5):511-514.
[16] 王翠娟.火灾模式下多梁式混凝土T型梁桥结构性能研究[D].西安:长安大学,2013. WANG Cui-juan. Study on structure performance for multi-beam concrete T-shaped section beam girder subjected to fire[D].Xian:Chang'an University, 2013.
[17] 廖仕超.隧道火灾下衬砌结构承载力研究[D].长沙:中南大学,2011. LIAO Shi-chao. Study on bearing capacity of lining structure under tunnel fire[D].Changsha:Central South University, 2011.

[1] WANG Zhe, WU Li-cheng. Triaxial test study of reactive powder concrete with different sizes under different friction reducing conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 40-50.
[2] SONG Ying-bin, XU Jin-xia, JIANG Lin-hua, TAN Qi-ping, MEI You-jing. Anti-corrosion performance of NO3-/NO2- intercalation of MgAl-LDHs in simulated concrete pore solution[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2397-2405.
[3] TIAN Shuai-qi, ZHANG Qing-yu, WANG Ke, FAN Li-wu, YU Zi-tao, GE Jian. Effect of sample size on transient measurement of water vapor diffusion coefficient[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2077-2082.
[4] WANG Ji-yang, MA Wei-qiang, HU Zhi-hua, WAN Cheng-lin. Effect of PE fiber content on mechanical behavior of cementitious composite[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2130-2135.
[5] LI Ben-ben, JIANG Jia-fei, DOU Xiang-xiang, XIAO Ping-cheng. New true-triaxial test apparatus with passive confinement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1688-1694.
[6] XUE Feng-Fei, XIANG Yi-Jiang. Corrected diffusion model of chloride in concrete and
its engineering application
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 831-.
[7] LEI Zhen-Yong, JIN Wei-Liang, WANG Hai-Long, et al. Similar design on accelerated test of artificial climate simulation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1071-1076.