Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Civil Engineering, Architectural Engineering     
Unified simplified settlement formula based on YinGraham’s rheological model
HU Ya yuan, YANG Qiu hua
Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
Download:   PDF(1002KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

From the perspective of the idea that under certain condition hypothesis B is approximately equivalent to modified hypothesis A in quasiplastic viscoelastic model, a new simplified formula of void ratio in terms of equivalent time was proposed based on YinGraham’s equivalent time rheological model and using time reduction factor to modify the difference between real time and equivalent time. The formula was valid for any suddenly loading and unloading cases, including loading in normally consolidated soil, loading in overconsolidated soil, unloading and loading after unloading. Two simplified formula of void ratio for the multistage construction were established by the means of total consolidation degree method and grading consolidation degree method, respectively. Through comparing with the exact solution and the measured data on site, results show that the calculation error of postconstruction settlement by the new simplified formula of void ratio is obviously smaller than those by the classical method and the old equivalenttime method in singlestage construction. The theoretical duration of surcharge preloading and postconstruction settlement were analyzed by the total consolidation degree method and the grading consolidation degree method respectively. Both results are approximate to the exact solution. As the total consolidation degree method is much simpler than the grading consolidation degree method, the former is suggested to calculate preloading duration and postconstruction settlement in the preloading method.



Published: 01 June 2016
CLC:  TU 47  
Cite this article:

HU Ya yuan, YANG Qiu hua. Unified simplified settlement formula based on YinGraham’s rheological model. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1009-1017.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.06.001     OR     http://www.zjujournals.com/eng/Y2016/V50/I6/1009


YinGraham流变模型沉降简化计算统一公式

从准塑性黏弹性模型在一定条件下假说B与修正的假说A近似等价的视角出发,基于YinGraham等效时间流变模型,通过时间折减因子修正实际时间和等效时间之间的差异,提出用等效时间表示的新孔隙比简化计算公式.该公式适用于任意突然加卸载工况,包括加载到正常固结土、加载到超固结土、卸载和卸载再加载.通过总固结度法和分级固结度法获得2种多级加载孔隙比简化计算公式.与精确解和现场实测数据对比结果表明,单级加载时新孔隙比简化公式预测的工后沉降计算偏差明显低于采用经典法和旧等效时间法得到的计算偏差;多级加载时总固结度法和分级固结度法计算的理论超载预压持续时间和工后沉降量均与精确解结果接近;由于总固结度法远比分级固结度法简单,建议采用前者计算预压法工艺的持续时间和工后沉降量.

[1] 中国人民共和国铁道部.高速铁路设计规范(试行):TB100262009 [S]. 北京:中国标准出版社, 2009.
[2] 龚晓南.地基处理手册:第三版[M].北京:中国建筑工业出版社, 2008: 69-162.
[3] 中华人民共和国交通运输部.公路软土地基路堤设计与施工技术规范:JTG/T D31022013[S]. 北京:中国标准出版社, 2013.
[4] 刘汉龙,扈胜霞,ALI Hassan.真空堆载预压作用下软土蠕变特性试验研究[J].岩土力学,2008, 29(1): 6-12.
LIU Hanlong, HU Shengxia, ALI H. Test study on creep characteristics of soft clayey soils under consolidation by vacuumsurcharge combined preloading method [J]. Rock and Soil Mechanics, 2008, 29(1): 612.
[5] 郭林, 蔡袁强,谷川,等.循环荷载下软黏土回弹和累积变形特性[J].浙江大学学报:工学版, 2013,47(12): 2111-2117.
GUO Lin, CAI Yuanqiang, GU Chuan, et al. Resilient and permanent strain behavior of soft clay under cyclic loading [J]. Journal of Zhejiang University: Engineering Science, 2013, 47(12): 2111-2117.
[6] 殷建华.从本构模型研究到试验和光纤监测技术研发[J].岩土工程学报,2011, 33(1): 1-15.
YIN Jianhua. From constitutive modeling to development of laboratory testing and optical fiber sensor monitoring technologies [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 1-15.
[7] 殷宗泽,张海波,朱俊高,等.软土的次固结[J].岩土工程学报,2003, 25(5): 521-526.
YIN Zongze, ZHANG Haibo, ZHU Jungao, et al. Secondary consolidation of soft soils [J]. Chinese Journal of Geotechnical Engineering, 2003, 25(5): 521-526.
[8] DEGAGO S A, GRIMSTAD G, JOSTAD H P, et al. Use and misuse of the isotache concept with respect to creep hypotheses A and B [J]. Geotechnique, 2011,61(10): 897-908.
[9] YIN J H, GRAHAM J. Viscouselasticplastic modelling of onedimensional timedependent behaviour of clays [J]. Canadian Geotechnical Journal, 1989, 26(2): 199209.
[10] SHI J Y, ZHAO W B, LI F H. Settlement analysis for an embankment considering viscoelastoplastic characteristics [J]. China Ocean Engineering, 2000, 14(3): 349-360.
[11] YIN J H, ZHU J G, GRAHAM J. A new elastic viscoplastic model for timedependent behaviour of normally and overconsolidated claystheory and verification [J]. Canadian Geotechnical Journal, 2002, 39(1): 157-173.
[12] 谢新宇,李金柱,王文军,等.宁波软土流变试验及经验模型[J].浙江大学学报:工学版,2012, 46(1): 64-71.
XIE Xinyu, LI Jinzhu, WANG Wenjun, et al. Rheological test and empirical model of Ningbo soft soil [J]. Journal of Zhejiang University: Engineering Science, 2012,46(1): 64-71.
[13] 张超杰,王立忠,陈云敏.一维弹粘塑性固结模型及其应用[J].浙江大学学报:工学版,2003, 37(1): 10-15.
ZHANG Chaojie, WANG Lizhong, CHEN Yunmin. Onedimensional elastic viscoplastic consolidation model and its application [J]. Journal of Zhejiang University: Engineering Science, 2003, 37(1): 10-15.
[14] 胡亚元.考虑蠕变时预压期的近似确定方法[J].浙江大学学报:工学版,2012, 46(2): 250-256.
HU Yayuan. Approximately determining preloading duration considering creep [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(2): 250-256.
[15] 刘吉福,郑刚,安关峰.等效时间计算方法研究[J].广西大学学报:自然科学版,2012,37(1): 160-164.
LIU Jifu, ZHENG Gang, AN Guanfeng. Study on the calculation of equivalent time [J]. Journal of Guangxi University: Nature Science Edition, 2012, 37(1): 160-164.
[16] BJERRUM L. Engineering geology of Norwegian normally consolidated marine clay as related to the settlements of buildings [J]. Geotechnique, 1967, 17(2): 83-118.
[17] ZHU G F, YIN J H. Elastic viscoplastic finite element consolidation modelling of Berthierville test embankment [J]. International Journal of Numerical and Analytic Methods in Geomechanics, 2000, 24: 491-508.
[18] NASH D F T, RYDE S J. Modelling consolidation accelerated by vertical drains in soils subject to creep [J]. Geotechnique, 2001, 51(3): 257-273.
[19] HU Y Y, ZHOU W H, CAI Y Q. Largestrain elastic viscoplastic consolidation analysis of very soft clay layers with vertical drains under preloading [J]. Canadian Geotechnical Journal, 2014, 51(2): 114-157.
[20] 谢康和.砂井地基:固结理论、数值分析与优化设计[D].杭州:浙江大学, 1987: 22-80.
XIE Kanghe. Sand well foundation: consolidation theory, numerical analysis and optimization design [D]. Hangzhou: Zhejiang University, 1987: 22-80.
[21] 顾晓鲁,钱鸿缙,刘惠珊,等.地基与基础:第三版[M].北京:中国建筑工业出版社, 2008: 183-198.
[22] HU Y Y. A practical evaluation of the surcharge preload period in staged construction subject to creep [J]. Computers and Geotechnics, 2012, 42: 171-179.
[23] 刘加才,赵维炳,宰金珉.排水固结下卧层固结度简化计算[J].水运工程,2006, 1: 75-79.
LIU Jiacai, ZHAO Weibing, ZAI Jinmin. Simplified consolidation calculation on substratum of ground improved by drainage consolidation [J]. Port and Waterway Engineering, 2006,1: 75-79.

[1] ZHENG Ling-wei, XIE Xin-yu, XIE Kang-he, LI Jin-zhu, LIU Yi-min. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1064-1073.
[2] KONG Ling-gang, YAO Hong-bo, ZHAN Ling-tong, CHEN Yun-min. Effect of water content on failure modes of evapotranspiration landfill cover[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 847-855.
[3] ZOU Sheng-feng, LI Jin-zhu, WANG Zhong-jin, LAN Lu, WANG Wen-jun, XIE Xin-yu. Seepage test and empirical models for soils based on GDS apparatus[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 856-862.
[4] XIANG Guo-sheng, FANG Yuan, XU Yong-fu. Swelling characteristics of GMZ01 bentonite affected by cation exchange reaction[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 931-936.
[5] ZANG Jun chao, ZHENG Ling wei, XIE Xin yu, CAO Li wen, LI Zhuo ming. Electro-osmosis reinforcement experiment of  life source polluted soil[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 245-254.
[6] HU Ya yuan. Thermodynamics-based constitutive theory for unsaturated porous rock[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 255-263.
[7] WU Yi qian,ZHU Yan peng. Improved calculation of settlement due to dewatering of foundation pits in phreatic aquifer[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2188-2197.
[8] YUAN Bing xiang,WU Yue dong, CHEN Rui, FENG Zhong wen, WANG Yi xian. Model tests on displacement field of internal soil induced by laterally loading pile[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 2031-2036.
[9] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1849-1854.
[10] XU Quan biao, CHEN Gang, HE Jing feng, GONG Shun feng. Flexural performance experiment of composite reinforcement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1768-1776.
[11] SHAN Hua feng, XIA Tang dai, YU Feng, HU Jun hua,PAN Jin long. Buckling stability analysis on critical load of underpinning pile for excavation beneath existing building[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1425-1430.
[12] HE Ben, WANG Huan, HONG Yi, WANG Li zhong, ZHAO Chang jun, QIN Xiao. Effect of vertical load on lateral behavior of single pile in clay[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1221-1229.
[13] TU Zhi bin, HUANG Ming feng,LOU Wen juan. Extreme load effects on bridge towerbasement system due to joint actions of wind and wave[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 813-821.
[14] CHEN Ren peng, MENG Fan yan, LI Zhong chao, YE Yue hong, HU Qi. Considerable displacement and protective measures for metro tunnels adjacent deep excavation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 856-863.
[15] QIU Zi yi, HAN Tong chun, DOU Hong qiang, LI Zhi ning. Analysis of spacing between anti slide piles considering soil arch on lateral sides and back[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 551-558.