Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Three-dimensional time-domain computation and evaluation of acoustic performance of multi-cavity perforated muffler
LI Heng,HAO Zhi-yong,LIU Lian-yun,ZHENG Xu
College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1401KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to minimize the snuffling noise caused by turbocharger and improve the sound quality, a multi-cavity perforated muffler was designed to be attached in a vehicle. Firstly the CFD approach was used to calculate the transmission loss (TL) of a single-cavity element without flow. Being consistent with the result calculated by FEM, CFD approach is proved to be validated towards this. And the influence on acoustic performance of such various structural parameters is achieved as well. Furthermore, the TL of such muffler, in the case of with/without the mean flow, was calculated by the CFD approach. In result, it performs well among the range of frequency below 2 000 Hz. The intake airflow tends to make TL be higher in the high frequency, but the amplitude and frequency of damping peaks are irregularly moved. Attaching the muffler to the inlet of compressor, the noise spectrum, sound pressure level and insertion loss were achieved, which indicates the wide-band noise is attenuated remarkably. According to the post-processing of certain parameters of sound quality, under the three different test conditions, the loneness is reduced 19%-38% in amplitude respectively, however the sharpness is increased a little in fact. Such multi-cavity perforated muffler has been proved excellent in acoustic performance according the road test, the sound quality has been improved apparently as well.



Published: 26 December 2015
CLC:  TK 402  
Cite this article:

LI Heng,HAO Zhi-yong,LIU Lian-yun,ZHENG Xu. Three-dimensional time-domain computation and evaluation of acoustic performance of multi-cavity perforated muffler. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 887-892.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.05.011     OR     http://www.zjujournals.com/eng/Y2015/V49/I5/887


多腔穿孔消声器声学特性三维时域计算及评估

为有效降低涡轮增压器泄气声,改善声品质,设计了多腔穿孔消声器.基于三维计算流体动力学(CFD)计算无流条件单腔穿孔结构的传递损失,与有限元法(FEM)计算结果相吻合,验证准确性,并研究不同结构参数对声学性能的影响.采用CFD法分别计算无流、平均流条件下消声器的传递损失,频率小于2 000 Hz消声性能良好,气流的存在使得高频区域传递损失有所增大,消声峰值及其对应频率无明显变化规律.安装消声器于压气机进气口侧,试验获得进气管口“泄气”噪声谱、声压级总值及插入损失,结果表明宽频泄气噪声成分得到显著降低.通过声品质参数后处理分析,3种工况下响度值降低幅度达19%~38%,而尖锐度变化不大.整车试验评估表明,所设计的多腔穿孔消声器消声效果显著,声品质改善明显.

[1] GRAEFENSTEIN A J, WENZEL W. “Herschel-quincke spiral” a new interference silencer [EB/OL]. [2014-05-21]. http:∥digitallibrary.sae.org/content/2003-01-1722.
[2] TROCHON E P. A new type of silencers for turbo charger noise control [EB/OL]. [2014-05-21]. http:∥digitallibrary.sae.org/content/2001-01-1436.
[3] PEAT K S, TORREGROSA A J, BROATCH A, et al. An investigation into the passive acoustic effect of the turbine in an automotive turbocharger [J]. Journal of Sound and Vibration, 2006, 295: 738-756.
[4] 刘联鋆,郝志勇,钱欣怡,等. 涡轮增压器出口消声器的性能预测和评估[J]. 哈尔滨工程大学学报. 2013, 34(2): 197-201.
LIU Lian-yun, HAO Zhi-yong, QIAN Xin-yi, et al. Prediction and evaluation of acoustic performance of silencer for turbocharger compressor outlet [J]. Journal of Harbin Engineering University, 2013, 34(2): 197-201.
[5] LEE I J, SELAMET A, KIM H. Design of a multi-chamber silencer for turbocharger noise [EB/OL]. [2014-05-21]. http:∥digitallibrary.sae.org/content/2009-01-2048.
[6] BROATCH A, MARGOT X, GIL A. A CFD approach to the computation of the acoustic response of exhaust mufflers [J]. Journal of Computational Acoustics, 2005, 13(2):301-316.
[7] 刘晨, 季振林, 徐航手. 穿孔管消声器声学性能三维时域计算及分析[J]. 机械工程学报. 2012, 48(10): 7-13.
LIU Chen, JI Zhen-lin, XU Hang-shou. Three-dimensional time-domain computation and analysis of acoustic attenuation performance of perforated tube silencers [J]. Journal of Mechanical Engineering, 2012, 48(10): 7-13.
[8] 徐航手, 季振林, 康钟绪. 抗性消声器传递损失预测的三维时域计算方法[J]. 振动与冲击. 2010, 29(4): 107-110.
XU Hang-shou, JI Zhen-lin, KANG Zhong-xu. Three-dimensional time-domain computation method of resistant muffler transmission loss [J]. Journal of Vibration and Shock, 2010, 29(4): 107-110.
[9] 石岩, 舒歌群, 毕凤荣. 基于计算流体动力学的内燃机排气消声器声学特性仿真[J]. 振动工程学报. 2011, 24(2): 205-209.
SHI Yan, SHU Ge-qun, BI Feng-rong. Acoustic characteristics simulation of engine exhaust muffler based on CFD [J]. Journal of Vibration Engineering, 2011, 24(2): 205-209.
[10] 庞剑, 谌刚, 何华. 汽车噪声与振动[M]. 北京:北京理工大学出版社, 2006: 198-203.
[11] MAO Jie, HAO Zhi-yong, JING Guo-xi, et al. Sound quality improvement for a four-cylinder diesel engine by the block structure optimization [J]. Applied Acoustics, 2013, 74: 150-159.
[12] 夏世东. 轿车车门关闭声的声品质研究[D]. 长春: 吉林大学, 2007.
XIA Shi-dong. Research on sound quality of car door closing noise[D]. Changchun: Jilin University, 2007.
[13] 申秀敏, 左曙光, 李林,等. 车内噪声声品质的支持向量机预测[J]. 振动与冲击. 2010, 29(6): 66-68.
SHEN Xiu-min, ZUO Shu-guang, LI Bin, et al. Interior Noise sound quality prediction with support vector machine. [J].Journal of Vibration and Shock, 2010, 29(6): 66-68.
第49卷第5期2015年5月浙江大学学报 (工学版)Journal of Zhejiang University (Engineering Science)Vol.49 No.5May  2015

[1] LIU Zi qi,GAO Wen zhi,LI Guang hua,HE Wang bo. Simulation test on single valve expander for waste heat recovery of  gasoline engine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2297-2302.
[2] LI Yi-min,HAO Zhi-yong,DU Ji-sheng. Study of coupling dynamics between crankshaft and
timing drive system of engine
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(9): 1650-1657.
[3] LIU Lian-yun, HAO Zhi-yong, QIAN Xin-yi. Simulation methods for acoustical characteristics of
air-cleaner filter element
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(10): 1784-1789.
[4] LI Yi-min, HAO Zhi-yong, YE Hui-fei. Dynamic characteristic analysis of diesel timing gear trains[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(8): 1472-1477.
[5] LI Yi-min, HAO Zhi-yong, ZENG Xiao-chun. Finite element analysis for connecting rod considering oil film lubrication[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(7): 1233-1237.
[6] LI Jia, LIU Zhen-tao, LIU Zhong-min, TAN Yong-nan, YU Xiao-li. Simulation and test of flow process in air filter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(2): 327-332.
[7] XIAO Bao-lan, YU Xiao-li, HAN Song, LU Guo-dong, XIA Li-feng. Parameter sensitivity analysis  of fin based on neural network
in  heat exchanger
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(1): 122-125.
[8] XIAO Bao-lan, YU Xiao-li, HAN Song, LU Guo-dong, XIA Li-feng. The study of effects of fin parameters on thermal hydraulic
performance of a vehicular charged air cooler
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(11): 2164-2168.
[9] XIAO Bao-Lan, SHU Xiao-Chi, ZHONG Xun, HAN Song, JIA Li-Feng. Experimental and numerical study of nanofluid flow and heat transfer performance[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(6): 1149-1154.