Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Anomalous diffusion of non-uniform bed load particles based on a stochastic-mechanic model
FAN Nian-nian1, WU Bao-sheng2
1. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China; 2.State Key Laboratory of Hydroscience and Hydraulic Engineering, Tsinghua University, Beijing 100084, China
Download: HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming to study the different diffusion regimes between uniform and non-uniform particles, Episodic Langevin Equation (ELE) based on stochastic-mechanics model was developed, which could reproduce the episodic movement (start and stop) of bed load particles, moreover, the model could link the probability distribution of velocities to the forces exerted on one single particle. We incorporated heterogeneity of particle sizes and simulated power-law distributed waiting times. For the violation of independent and identical distribution assumption, non-uniform particles resulted in completely different diffusion regimes with uniform particles. Our results demonstrate that heterogeneity in particles results in ballistic in large scales, which illustrates that the transport process is deterministic sorting, rather than anomalous diffusion.



Published: 01 February 2015
CLC:  TV 14  
Cite this article:

FAN Nian-nian, WU Bao-sheng. Anomalous diffusion of non-uniform bed load particles based on a stochastic-mechanic model. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 246-250.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.02.008     OR     http://www.zjujournals.com/eng/Y2015/V49/I2/246


基于随机-动力学模型的非均匀推移质扩散

为了研究非均匀颗粒与均匀颗粒扩散特性的差异,基于随机-动力学模型建立非均匀推移质泥沙运动的间歇朗之万方程,该方程不仅能够模拟推移质颗粒的间歇运动(运动-静止交替)过程,而且能够较好地反映颗粒速度统计分布特征与颗粒受力之间的联系.采用建立的模型对非均匀颗粒长尾分布停时进行模拟,分析均匀颗粒与非均匀颗粒扩散特征的差异.结果表明,颗粒的非均匀性可以导致某些随机量(如停时)满足长尾分布,但因为不满足中心极限定理,这种长尾分布与均匀颗粒的长尾分布将导致完全不同的扩散类型.说明非均匀颗粒在大的时间尺度上表现为弹道运动,这种弹道运动反映出的并不是反常扩散,而是确定性的沿程分选过程.

[1] 韩其为, 何明民. 推移质扩散的随机模型及统计规律[J]. 中国科学:A辑, 1980(4): 396-408.
HAN Qi-wei, HE Ming-min. Stochastic models for bed load particle diffusion and the statistical properties [J], Science China: Series A, 1980(4): 396-401.
[2] NIKORA V, HABERSACK H, HUBER T, et al. On bed particle diffusion in gravel bed flows under weak bed load transport [J]. Water Resources Research, 2002, 38(10816): 117.
[3] SCHUMER R, MEERSCHAERT M M, BAEUMER B. Fractional advection-dispersion equations for modeling transport at the earth surface [J]. Journal of Geophysical Research-Earth Surface, 2009, 114(F00A07): 115.
[4] MARTIN R L, JEROLMACK D J, Schumer R. The physical basis for anomalous diffusion in bed load transport [J]. Journal of Geophysical Research-Earth Surface, 2012, 117(F01018): 118.
[5] HASCHENBURGER J K. Tracing river gravels: insights into dispersion from a long-term field experiment [J]. Geomorphology, 2013, 200: 121-131.
[6] HASSAN M A, VOEPEL H, SCHUMER R, et al. Displacement characteristics of coarse fluvial bed sediment [J]. Journal of Geophysical Research-Earth Surface, 2013, 118(1): 155-165.
[7] GANTI V, MEERSCHAERT M M, FOUFOULA-GEORGIOU E, et al. Normal and anomalous diffusion of gravel tracer particles in rivers [J]. Journal of Geophysical Research-Earth Surface, 2010, 115(F00A12): 112.
[8] FAN N, ZHONG D, WU B, et al. A mechanistic-stochastic formulation of bed load particle motions: from individual particle forces to the Fokker-Planck equation under low transport rates [J]. Journal of Geophysical Research-Earth Surface, 2014, 119: 464-482.
[9] ROSEBERRY J C, SCHMEECKLE M W, FURBISH D J. A probabilistic description of the bed load sediment flux: 2. Particle activity and motions [J]. Journal of Geophysical Research-Earth Surface, 2012, 117(F03032): 121.
[10] YANG C T, SAYRE W W. Stochastic model for sand dispersion \[J\]. Journal of the Hydraulics Division,1971(97): 265-288.
[11] SUN Z L, DONAHUE J. Statistically derived bedload formula for any fraction of nonuniform sediment [J]. Journal of Hydraulic Engineering-ASCE, 2000, 126(2): 105-111.
[12] WU B S, MOLINAS A, JULIEN P Y. Bed-material load computations for nonuniform sediments [J]. Journal of Hydraulic Engineering-ASCE, 2004, 130(10): 1002-1012.
[13] PARKER G, SUTHERLAND A J. FLUVIAL ARMOR [J]. Journal of Hydraulic Research, 1990, 28(5): 529-544.
[14] 何文社. 非均匀沙运动特性研究 [D]. 成都:四川大学, 2002.
HE Wen-she. Study on laws of transport for non-uniform Sediment [D]. Chengdu: Sichuan University, 2002.
[15] DRAKE T G, SHREVE R L, DIETRICH W E, et al. Bedload transport of fine gravel observed by motion-picture photography [J]. Journal of Fluid Mechanics, 1988, 192: 193-217.
[16] ZHANG Y, MEERSCHAERT M M, PACKMAN A I. Linking fluvial bed sediment transport across scales [J]. Geophysical Research Letters, 2012, 39(L20404): 16.
[1] KUANG Cui ping, SONG Hong lin, GU Jie, MA Zhen. Three-dimensional characteristics of wind-induced current and turbulence at Huanghua Harbor[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 38-45.
[2] GUO Cong, SUN Zhi lin, ZHENG Hao lei, PAN Gui e. Response of estuarine erosion and deposition to reclamation in estuary[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1791-1797.
[3] ZHANG Xiao lei, XIA Jun qiang, DENG Shan shan, WANG Zeng hui. Effect of different cross sectional spacing on simulation results of hyperconcentrated floods in Lower Yellow River[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 735-743.
[4] ZHANG Wen jun, SUN Hong yue, PAN Pan, WEI Zhen lei.

Analysis on self dredging capability of siphon drainage pool in debris flow[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2159-2164.

[5] HU De-chao, CHI Long-zhe, YANG Qiong, WANG Min. Development mechanics of scouring funnel before dam of reservoir[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 257-264.
[6] XIA Jun-qiang, ZONG Quan-li, DENG Shan-shan, XU Quan-xi, ZHANG Yi. Adjustments in reach-scale bankfull channel geometry of Jingjiang reach after operation of Three Gorges Project[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 238-245.
[7] SUN Zhi-lin, NI Xiao-jing, XU Dan, NIE Hui. Some problems on mathematical model of sediment transport in Estuary[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 232-237.
[8] ZHOU Jian-yin, SHAO Xue-jun, JIANG Lei, JIA Dong-dong. Gravity-driven transport of fine grained reservoir sediments[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2254-2258.
[9] SUN Zhi-lin, YANG Zhong-tao, GAO Yun, XU Dan, HU Shi-xiang. Hydraulic geometry of branching channels in Yangtze estuary[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2266-2270.
[10] CHEN Yi-fan, CHENG Wei-ping, JIANG Jian-qun. A robust river roughness calibration model[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(8): 1361-1365.
[11] ZHANG Shi-xia, WANG Zi-wen, WU Sai-nan. Landscape ecological mechanism  study on impact of coastal
reclamation on  function of  disaster prevention:
 illustrated with Hangzhou Bay and Qiantang estuary
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(7): 1281-1288.
[12] LI Jia, YAO Yan-ming, SUN Zhi-lin, HUANG Sai-hua, YANG Xiao-dong. Numerical simulation of transport and dispersion of suspended
matter due to dredged sediment disposal into large marine dumping area
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(7): 1319-1328.
[13] HU Dan, SUN Zhi-Lin. Numerical simulation and analysis of abrupt pollutants
diffusion in Qiantang estuary
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(9): 1767-1772.