Experiments on hydrogen combustion with addition of  methane in micro converged nozzle" /> Experiments on hydrogen combustion with addition of  methane in micro converged nozzle" /> Experiments on hydrogen combustion with addition of  methane in micro converged nozzle" /> 渐缩微喷管内氢气掺混甲烷预混燃烧实验研究
Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Experiments on hydrogen combustion with addition of  methane in micro converged nozzle
WANG Wei, DENG Chen, YANG Wei-juan, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(712KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Experiments of hydrogen premixed combustion with the addition of methane were conducted in a micro converged nozzle with outlet diameter of 1.6 mm. The effects of different equivalence ratios (the ratio of actual amount of air supply and theoretically complete combustion air volume) and mixing ratios R(VCH4/Vfuel) on hydrogen/ methane /air premixed combustion were performed. The experiments focused on the stable ranges, thrust output and the temperature distribution of wall surface. Experimental results show that the lower limit of stable inlet velocity decreases when R increases, and it increases with the increase of equivalence ratio. The largest width appears at Φ=0.7. When Φ=0.6, the highest wall temperature drops with the increase of R; however, when Φ=0.9, the highest wall temperature is nearly unchanged; the highest wall temperature is measured when Φ=0.7 ,which is 761 ℃. Two layers of the flame in homogeneous combustion is observed. The inner layer flame color is almost light blue, which shows that the hydrogen burns first and then the methane. When input power Q≈13 W, the maximum thrust output and the highest efficiency appears at Φ=1.0.



Published: 01 October 2014
CLC:  TK 91  
Cite this article:

WANG Wei, DENG Chen, YANG Wei-juan, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa.

Experiments on hydrogen combustion with addition of  methane in micro converged nozzle
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1727-1731.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.10.002     OR     http://www.zjujournals.com/eng/Y2014/V48/I10/1727


渐缩微喷管内氢气掺混甲烷预混燃烧实验研究

在出口直径为1.6 mm的石英渐缩喷管中进行预混燃烧实验,研究不同当量比(实际供给的空气量与理论上可完全燃烧需要空气量之比)以及混合比R(甲烷体积与燃料总体积比)下氢气/甲烷/空气在微尺度喷管内稳燃范围、输出推力、壁面温度分布等特性.通过实验发现,混合比越大,对应的稳定流速下限越小,当量比越大,对应的稳定流速下限越大,其中Φ=0.7,稳燃流速范围最大.当Φ=0.6时,壁面最高温度随着R的增大而减小,但是当Φ=0.9时,壁面最高温度几乎没有变化.壁面最高温度出现在Φ=0.7时,为761 ℃.火焰分为2层,内层颜色基本为淡蓝色,表明燃烧中氢气被点燃.当输入功率(由氢气和甲烷的热值与各工况体积流量计算获得)Q=13 W时,Φ=1.0时得到的比冲最大,效率最高.

[1] LIJI V, KIM H D, SETOGUCHI T, et al. Numerical simulation of transient flows in a rocket propulsion nozzle [J]. International Journal of Heat and Fluid Flow, 2010, 31(3): 409-417.
[2] WANG C H, LIU Y, QIN L Z. Aerospike nozzle contour design and its performance validation [J]. Acta Astronautica, 2009, 64(11/12): 1264-1275.
[3] GARDNER W G, JAWORSKI J W, CAMACHO A P, et al. Experimental results for a microscale ethanol vapor jet ejector [J]. Journal of Micromechanics and Microengineering, 2010, 20 (4): 45019.
[4] MORINIGO J A, QUESADA J H. Analysis of viscous heating in a micro-rocket flow and performance [J]. Journal of Thermal Science, 2008, 17 (2): 116-124.
[5] MORINIGO J A, HERMIDA-QUESSADA J. Solid-gas surface effect on the performance of a MEMS-class nozzle for micropropulsion [J]. Sensors and Actuators A-Physical, 2010, 162 (1): 61-71.
[6] 尤政,张高飞,任大海.MEMS微推进技术的研究[J].纳米技术与精密工程,2004, 2(2): 98-105.
YOU Zheng, ZHANG Gao-fei, REN Da-hai. Study on MEMS micro-thruster technology [J]. Nanotechnology and Precision Engineering, 2004, 2(2): 98-105.
[7] GENG T, ZHENG F, KIKER A P, et al. Experimental and numerical investigation of an 8-cm valveless pulsejets [J]. Experimental Thermal and fluid Science, 2007, 31(7): 641-647.
[8] SAN O, BAYRAKTAR I, BAYRAKTAR T. Size and expansion ratio analysis of micro nozzle gas flow [J]. International Communications in Heat and Mass Transfer, 2009, 36: 402-411.
[9] HASSE C, BOLLIG M, PRTERS N, et al. Quenching of laminar iso-octane flames at cold walls [J]. Combustion and Flame, 2000, 122 (1/2): 117-129.
[10] 周俊虎,汪洋,杨卫娟,等.提升反应温度对微尺度火焰稳定性的改善[J].燃烧科学与技术, 2010, 16(3): 215-219.
ZHOU Jun-hu, WANG Yang, YANG Wei-juan, et al. Effects of improving reaction temperature on microflame stability [J]. Combustion Science and Technology, 2010, 16(3): 215-219.
[11] 杨立军,富庆飞.燃烧室压力振荡对喷嘴出口流量振荡影响分析[J].火箭推进,2008, 34(8): 611.
YANG Li-jun, FU Qing-fei. Affect of the combustion chamber pressure oscillations on the nozzle exit flow oscillations [J]. Journal of Rocket Propulsion, 2008, 34(8): 611.
[12] 张红光,白小磊,韩雪娇,等.甲烷掺混氢气的燃烧特性试验研究[J].兵工学报,2011,32(2): 230-235.
ZHANG Hong-guang, BAI Xiao-lei, HAN Xue-jiao, et al. Research on combustion characteristics of methane-hydrogen-air mixture [J]. Journal of Ordnance, 2011, 32(2): 230-235.
[13] 钟北京,傅维标.甲烷火焰中氢气对着火与燃尽的影响[J].燃烧科学与技术, 2001, 7(2): 194-198.
ZHONG Bei-jing, FU Wei-biao. Effect of H2 on ignition and burnout in methane flame [J]. Combustion Science and Technology, 2001, 7(2): 194-198.
[14] 蒋勇,邱榕,宋崇林,等.添加氢气的甲烷/空气预混火焰结构的数值预测[J].燃烧科学与技术, 2009, 15(3): 196-202.
JIANG Yong, QIU Rong, SONG Chong-lin, et al. Numerical predictions of hydrogen-enriched premixed methane/air flames [J]. Combustion Science and Technology, 2009, 15(3): 196-202.
[15] 冉景煜,吴晟,赵柳洁,等.微细通道内氢气辅助甲烷催化氧化的数值模拟[J].燃烧科学与技术, 2011, 17(3): 196-202.
RAN Jing-yu, WU Sheng. ZHAO Liu-jie, et al. Numerical simulation of hydrogen assisted lean methane catalytic oxidation in a micro-channel [J]. Combustion Science and Technology, 2011, 17(3): 196-202.
[16] 蒋利桥,赵黛青,汪小憨,等.微尺度甲烷扩散火焰及其熄灭特性[J].燃烧科学与技术,2007, 13(2): 183-186.
JIANG Li-qiao, ZHAO Dai-qing, WANG Xiao-han, et al. The micro-diffusion flame and quench feature of methane [J]. Combustion Science and Technology, 2007, 13(2): 183-186.
[17] 汪洋.微尺度环境下预混火焰稳燃方法的研究[D].杭州:浙江大学,2010.
WANG Yang. Study of stabilizing premixed combustion in microscale condition [D]. Hangzhou: Zhejiang University, 2010.
[1] ZHOU Ming yue, YANG Wei juan, DENG Chen, ZHOU Jun hu, LIU Jian zhong, CEN Ke fa. Experiments on hydrogen/methane/air catalytic combustion in micro tube[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2276-2281.
[2] ZHU Qiao-qiao, WANG Zhi-hua, YANG Jian, ZHANG Yan-wei, ZHOU Jun-hu, CEN Ke-fa. Experimental study of influence of iodine content on Bunsen reaction
in the sulfur-iodine cycle for hydrogen production
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(10): 1786-1790.
[3] QIAN Miao, MEI De-qing, LIU Bin-hong,CHEN Zi-chen. Heat and mass transfer characteristics in reforming micro-reactor with micro-pin-fin arrays[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(8): 1387-1392.
[4] YANG Jian,WANG Zhi-hua,ZHANG Yan-wei,CHEN Yun,ZHOU Jun-hu,CEN Ke-fa. Process design and simulation of open-loop sulfur-iodine
thermo-chemical cycle for hydrogen production
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(5): 869-877.
[5] LIN Lin, WU Rui, ZHANG Xin-xin. Optimization for geometric parameters of micro-channel heat sink
using inverse problem method
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(4): 734-740.