Please wait a minute...
J4  2014, Vol. 48 Issue (4): 666-670    DOI: 10.3785/j.issn.1008-973X.2014.04.016
    
Experimental study of heat and mass transfer of saltwater cooling tower
WANG Chao, DONG Fei-ying, FAN Li-wu, YU Zi-tao, HU Ya-cai
Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1109KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Experiments were performed on a mechanical-draft counter-flow cooling tower to analyze the heat and mass transfer of saltwater cooling towers at high concentrations. By maintaining the inlet saltwater temperature at 28~50 ℃,the effects of mass fraction of the saltwater (6%, 12%, 16%, 25%, and 34% aqueous CaCl2 solutions) and Reynolds number Re (ranging between 2 000~16 000) on the non-dimensional heat and mass transfer coefficients, NuV and ShV were respectively analyzed. Results show that self-scaling phenomenon is occurred in packing layer of saltwater cooling tower, and the NuV Pr-1/3 and ShV Sc-1/3 are nearly independent of Re. The heat and mass transfer performance of the cooling towers deteriorates with increasing the concentration of the saltwater. When the mass fraction is increased from 6% to 34%, NuVPr-1/3 and ShVSc-1/3 are decreased by 51.5% and 45.8%, respectively. Correlations of NuVPr-1/3 and ShVSc-1/3 to the variation of concentration were proposed based on linear curve fitting.



Published: 03 September 2014
CLC:  TK 124  
Cite this article:

WANG Chao, DONG Fei-ying, FAN Li-wu, YU Zi-tao, HU Ya-cai. Experimental study of heat and mass transfer of saltwater cooling tower. J4, 2014, 48(4): 666-670.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.04.016     OR     http://www.zjujournals.com/eng/Y2014/V48/I4/666


盐水冷却塔传热传质特性的实验研究

为了研究高浓度盐水冷却塔的传热传质特性,通过机械通风式逆流冷却塔实验台,在不同进塔盐水温度(28~50 ℃)的条件下,研究改变盐水质量分数(6%、12%、16%、25%和34%的氯化钙溶液)及雷诺数Re(范围:2 000~16 000)分别对无量纲换热系数NuV和无量纲传质系数ShV的影响.结果表明:NuVPr-1/3和ShVSc-1/3均与Re无关,即在填料层内发生了关于Re的自模化现象;随着盐水质量分数的升高,盐水冷却塔的传热和传质性能均有所下降.当盐水质量分数由6%提高到34%时,NuVPr-1/3的平均值下降了51.5%,ShVSc-1/3的平均值下降了45.8%.通过线性拟合得到了NuVPr-1/3和ShVSc-1/3随盐水质量分数变化的关联式.

[1] LEMOUARI M, BOUMAZA M, MUJTABA I M. Thermal performances investigation of a wet cooling tower [J]. Applied Thermal Engineering, 2007,27(5/6): 902-909.
[2] BEDEKAR S V, NITHIARASU P, SEETHARAMU K N. Experimental investigation of the performance of a counter flow packed bed mechanical cooling tower [J]. Energy, 1998,23(11): 943-947.
[3] NESTER D M. Salt water cooling tower [J]. Chemical Engineering Progress, 1971,67(7): 49-51.
[4] 刘继平,严俊杰,邢秦安,等.一种冷却塔节水方法及系统:中国,200810150076.7 [P]. 2008-1203.
LIU Ji-ping,YAN Jun-jie,XING Qin-an,et al. A method and system for water conservation of cooling towers: China,200810150076.7 [P]. 20081203.
[5] 胡亚才,阮光正,王红梅,等.自然通风盐水冷却塔:中国,200910155863.5 [P]. 20100630.
HU Ya-cai,RUAN Guang-zheng,WANG Hong-mei,et al. Natural-draft saltwater cooling towers: China,200910155863.5 [P]. 20100630.
[6] NARAYAN G P, MISTRY K H, SHARQAWY M H, et al. Energy effectiveness of simultaneous heat and mass exchange devices [J]. Frontiers in Heat and Mass Transfer, 2010, 1(2): 1-13.
[7] SHARQAWY M H, LIENHAED V J H, ZUBAIR S M. On thermal performance of seawater cooling towers [J]. Journal of Engineering for Gas Turbines and Power,2011,133(4):04300117.
[8] 赵顺安. 海水冷却塔[M]. 北京:中国水利水电出版社,2007.
[9] ONDA K, TAKEUCHI H, OKUMOTO Y. Mass transfer coefficients between gas and liquid phases in packed columns [J]. Journal of Chemical Engineering of Japan, 1968, 1(1): 5662.
[10] 夏巧民.节水冷却塔与双效塑料溴化锂制冷机系统的实验研究[D]. 杭州:浙江大学,2011.
XIA Qiao-min. Experimental study of water-saving cooling tower and double-effect plastic LiBr absorption chiller [D]. Hangzhou: Zhejiang University,2011.
[11] TAKESHI S, TOSHIKATSU H, HIROSHI Y. Vapor pressures of binary (H2O-HCl,-MgCl2, and-CaCl2) and ternary (H2O-MgCl2-CaCl2) aqueous solutions [J]. Journal of Chemical and Engineering Data,1985,30 (2): 224-228.
[12] MANEUL R C. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design [J]. International Journal of Thermal Sciences, 2004, 43 (4): 367-382.
[13] PATIL K R, TRIPATHI A D, PATHAK G, et al. Thermodynamic properties of aqueous electrolyte solutions. 1. vapor pressure of aqueous solutions of lithium chloride, lithium bromide, and lithium iodide [J]. Journal of Chemical and Engineering Data, 1990, 35 (2): 166168.
[14] CONNAUGHTON L M, HERSHEY J P, MILLERO F J. PVT properties of concentrated aqueous electrolytes: V. densities and apparent molal volumes of the four major sea salts from dilute solution to saturation and from 0 to 100℃ [J]. Journal of Solution Chemistry, 1986, 12(15): 9891002.
[15] 威尔特J R,威克斯C E,威尔逊R E,等. 动量、热量和质量传递原理[M]. 北京:化学工业出版社,2005.
[16] KLOPPERS J C, KRGER D G. A critical investigation into the heat and mass transfer analysis of counter flow wet-cooling towers [J]. International Journal of Heat and Mass Transfer, 2005, (48): 765777.
[17] 周劲松,王黎,吴嘉洲,等. 湿式逆流冷却塔四变量模型研究[C]∥2009中国过程系统工程年会暨中国MES年会论文集.杭州:[s.n.],2009.
ZHOU Jin-song,WANG Li,WU Jia-zhou,et al. The four parameters model of cooling towers [C]∥ Proceedings of the PSE and MES. Hangzhou: [s.n.], 2009.
[18] LEMOUARI M, BOUMAZA M, KAABI A. Experimental analysis of heat and mass transfer phenomena in a direct contact evaporative cooling tower [J]. Energy Conversion and Management, 2009,50(6): 1610-1617.
[19] HEYNS J A, KRGER D G. Experimental investigation into the thermal-flow performance characteristics of an evaporative cooler [J]. Applied Thermal Engineering,2010,30(5): 492-498.
[20] 蒋常建,范云良,杨强生. 蒸发式冷却器传热传质试验研究[J].上海交通大学学报,1999, 33(8): 1032-1035.
JIANG Chang-jian,FAN Yun-liang,YANG Qiang-sheng. Experimental heat and mass transfer study of evaporative cooler [J]. Journal of Shanghai Jiaotong University,1999, 33(8): 10321035.
[21] 郑伟业,朱冬生,宋进,等. 新型闭式冷却塔传热传质的试验研究[J].化学工程,2011,39(9): 34-37.
ZHENG Wei-ye,ZHU Dong-sheng,SONG Jin, et al. Experimental investigation of heat and mass transfer of novel closed circuit cooling tower [J]. Chemical Engineering(CHINA),2011,39(9): 34-37.

[1] XIAO Yu-qi,FAN Li-wu,HONG Rong-hua,XU Xu,YU Zi-tao,HU Ya-cai. Numerical investigation of influence of  nanofillers on performance of energy storage-based heat sink[J]. J4, 2013, 47(9): 1644-1649.
[2] ZENG Yi, HONG Rong-hua, FAN Li-wu, XU Xu,YU Zi-tao, HU Ya-cai. Natural convection of a heat-generating fluid around a horizontal porous percolating circular cylinder[J]. J4, 2013, 47(8): 1463-1469.
[3] WANG Zhi-ke, SUN Xian-dong, GUO Si-pu, LI Hong-xia, LI Wei, ZHU Hua. Experimental Result of condensation in micro-fin tubes of
different geometries
[J]. J4, 2013, 47(2): 293-299.
[4] HUANG Chen,CHENG Le-ming,ZHOU Xing-long,WU Chao-gang,ZHOU Qi, FANG Meng-xiang,. Suspended surface heat transfer in a large circulating
fluidized bed boiler furnace
[J]. J4, 2012, 46(11): 2128-2132.
[5] LI Hong-xia, LI Guan-qiu, LI Wei. Analysis of in tubes particulate fouling characteristic[J]. J4, 2012, 46(9): 1671-1677.
[6] CHEN Wei, QU Li-juan, WANG Chao, YU Zi-tao, WANG Jing-hua. An experimental investigation of the performance of an air-source heat
pump hot-water system based on saltwater energy towers
[J]. J4, 2012, 46(8): 1485-1489.
[7] ZHENG Cheng-Hang, CHENG Le-Ming, LI Chao, JIA Zhong-Yang, NI Meng-Jiang, CEN Ge-Fa. Numerical simulation   of low calorific gas combustion and
heat transfer in porous media
[J]. J4, 2010, 44(8): 1567-1572.