Please wait a minute...
J4  2009, Vol. 43 Issue (6): 999-1004    DOI: 10.3785/j.issn.1008-973X.2009.
    
Approximating logarithmic spiral segments by polynomial and C-Bézier
 CA Hua-Hui, WANG Guo-Jin
(State Key Laboratory of CAD&CG, Institute of Computer Images and Graphics, Zhejiang University,  Hangzhou 310027, China)
Download:   PDF(653KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To fit the curve forms  in  current computer aided design (CAD) systems and aesthetic needs in industrial designs, two approximation algorithms for logarithmic spiral segments were proposed. In the first method, the calculation formula for s-Power series was derived and a fast polynomial approximation algorithm was presented, and then the calculation formula for the offset curves of the logarithmic spiral and the corresponding approximation algorithm by s-Power series were presented. In the second method, the G2 Hermite interpolation  formula of  two end points by  C-Bézier form was firstly derived, and then  a G2 Hermite interpolation approximation algorithm by  C-Bézier form was presented. The computing results of examples show that these two approximation methods are correct and effective, suitable for the use of CAD systems.



Published: 01 June 2009
CLC:  TP391  
Cite this article:

CA Hua-Hui, WANG Guo-Jin. Approximating logarithmic spiral segments by polynomial and C-Bézier. J4, 2009, 43(6): 999-1004.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2009.     OR     http://www.zjujournals.com/eng/Y2009/V43/I6/999


对数螺线段的多项式逼近与C-Bézier逼近

为了适合当前计算机辅助设计(CAD)系统中的曲线形式和工业设计中的美学需要, 提出了对数螺线段的两种逼近方法:(1)利用s-Power级数, 推导出s-Power系数的计算公式, 给出了对数螺线段的快速多项式逼近算法、对数螺线的等距曲线的具体表达式及其s-Power逼近算法;(2)首先推导出两端点C-Bézier形式的G2Hermite插值公式, 然后提出了对数螺线段的C-Bézie表示的G2Hermite插值逼近算法. 实例运算结果表明, 两种逼近方法是正确与有效的, 完全适合CAD系统使用.

[1] SAPIDIS N S. Designing fair curves and surfaces[M]. Philadelphia :Society for Industrial and Applied Mathematics , 1994: 328.
[2] YOSHIDA N, SAITO T. Quasi-aesthetic curves in rational cubic Bzier forms[J]. Computer-Aided Design and Applications , 2007,4(1-4): 477486.
[3] MEEK D S, WALTON D J. Planar spirals that match G2 hermite data[J]. Computer Aided Geometric Design, 1998,15(2): 103126.
[4] DIETZ D A, PIPER B. Interpolation with cubic spirals[J]. Computer Aided Geometric Design, 2004,21(2): 165180.
[5] GOODMAN T N T, MEEK D S. Planar interpolation with a pair of rational spirals[J]. Journal of Computational and Applied Mathematics, 2007,201(1): 112127.
[6] WANG L Z, MIURA K T, NAKAMAE E, et al, An approximation approach of the clothoid curve defined in the interval [0, π/2] and its offset by free-form curves[J]. Computer Aided Design, 2001, 33 (14): 10491058.
[7] SNCHEZ-REYES J, CHACO′N J M, Polynomial approximation to clothoids via s-power series[J].Computer Aided Design, 2003, 35 (14): 13051313.
[8] MEEK D S, WALTON D J.An arc spline approximation to a clothoid[J]. Journal of Computational and Applied Mathematics, 2007, 170 (1): 5977.
[9] BAUMGARTEN C, FARIN G. Approximation of logarithmic spirals[J]. Computer Aided Geometric Design, 1994,14(6): 515532.
[10] ZHANG Ji-wen, C-curves: An extension of cubic curves[J]. Computer Aided Geometric Design, 1996,13(3): 199217.
[11] SNCHEZ-REYES J. The symmetric analogue of the polynomial power basis[J]. ACM Transactions on Graphics, 1997, 16(3): 319357.
[12] SNCHEZ-REYES J. Applications of the s-power basis in geometry processing[J]. ACM Transactions on Graphics, 2000, 19(1): 2755.
[13] 许幸新, 郑友益, 高咏涛. 对数螺线及其在机械工程领域中的应用[J]. 机械设计, 2003, 20(1): 6970.
XU Xing-xin, ZHENG You-yi, GAO Yong-tao. Logarithmic spiral and its application in the field of mechanical engineering[J]. Journal of Machine Design, 2003, 20(1): 6970.
[14] DANIEL M, DAUBISSE J C. The numerical problem of using Bézier curves and surfaces in the power basis[J]. Computer Aided Geometric Design, 1989, 6(2): 121128.
[15] FAROUKI R T. On the stability of transformations between power and Bernstein polynomial forms\
[J\]. Computer Aided Geometric Design, 1991, 8(1): 2936.
[16] 汪仁泰, 陈建兰. 空间曲线的C-Bézier插值[J]. 浙江工业大学学报, 2004, 32(2): 225227.
WANG Ren-tai, CHEN Jian-lan. C-Bézier curve interpolation for spatial surves[J]. Journal of Zhejiang University of Technology, 2004, 32(2): 225227.
[17] DE BOOR C, HOLLIG K, SABIN M. High accuracy geometric Hermite interpolation[J]. Computer Aided Geometric Design, 1987, 4(4): 269278.

[1] HU Qiu-Er, OU Yang-Yi, ZHANG San-Yuan, ZHANG Yin. Mesh deformation transfer based on meanvalue skeleton[J]. J4, 2010, 44(4): 710-714.
[2] CHAN Zhen-Yu, YANG Ying-Chun. Universal background model reduction based efficient speaker recognition[J]. J4, 2009, 43(6): 978-982.
[3] BIAN Ke-Ke, WANG Jing, LI Jiang-Xiong, et al. Local consistent mending technique for complex freeform surface model[J]. J4, 2009, 43(6): 1118-1123.
[4] HUANG Feng, BO Jia-Dun, CHEN Chun, et al. Improving question classification via weighted feature model[J]. J4, 2009, 43(6): 994-998.
[5] SHU Beng, HONG Guo-Zhao. Multi-degree B-spline curves[J]. J4, 2009, 43(5): 789-795.
[6] LOU Bin, CHEN Hai-Bin, DIAO Wu-Feng, et al. Structural similarity image quality assessment based on distortion model[J]. J4, 2009, 43(5): 864-868.
[7] XU Jing-hua, ZHANG Shu-you. Shape retrieval method of 3D models based on shape  distribution graph and BP neural network[J]. J4, 2009, 43(5): 877-883.