Please wait a minute...
J4  2009, Vol. 43 Issue (8): 1513-1519    DOI: 10.3785/j.issn.1008-973X.2009.
    
Shape optimization analysis of tensegrity structure
 XIAO Na, XIAO Xin, DONG Dan-Lin
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1220KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to enhance the stiffness and to reduce the interior forces of tensegrity structures, actuators which could vary members’ length actively were introduced into tensegrity structures for shape adjustment. The reasonable working state coefficient of the structure was defined and the synthetic stiffness of members and actuators was derived, then the nodal displacement equations were  deduced considering the actuators’ active deformations. A linear programming model was established for optimizing the working state coefficient subjecting to the limited nodal displacements, cable stresses and working parameters of the actuator. Through the optimization model, the actuators’ active displacements were solved and a Matlab program was developed. The results of two examples showed that the optimization method greatly enhances the structural stiffness under the same loads by varying the structural shape, and reaches the objectives of minimizing the interior forces and enhancing the stiffness by reasonably disposing actuators.



Published: 28 September 2009
CLC:  TU 560.3030  
Cite this article:

XIAO Na, XIAO Xin, DONG Dan-Lin. Shape optimization analysis of tensegrity structure. J4, 2009, 43(8): 1513-1519.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2009.     OR     http://www.zjujournals.com/eng/Y2009/V43/I8/1513


张力结构形状调整优化分析

通过在张力结构杆件中引入作动器,主动调整杆件的长度,改变结构的形状,以提高张力结构的刚度和减小结构受力.定义了结构的合理工作状态系数,得出了作动器与杆件串联时的综合刚度和考虑作动器主动变形量的结点位移方程.以结构工作状态系数最小为目标,以作动器主动变形量为未知量,考虑索的应力约束、结点的位移约束以及作动器参数等约束条件建立了优化模型,编制了相应的求解程序.通过算例表明,作动器工作调整张力结构的形状后,在相同荷载作用下,结构的刚度大大提高,并且通过合理地布设作动器,可以达到杆件受力减小而结构刚度增大的优化目的.

[1] 董石麟,罗尧治,赵阳. 新型空间结构分析、设计与施工[M]. 北京:人民交通出版社, 2006.
[2] 曹喜,刘锡良. 张拉整体结构的预应力优化设计[J]. 空间结构, 1998, 4(1): 32-35.
CAO Xi, LIU Xi-liang. Prestress optimization design of tensegrity structure [J]. Space Structure, 1998, 4(1): 32-35.
[3] 赵宝成,曹喜. 索穹顶结构的优化设计[J]. 工业建筑, 2002, 32(10): 60-62.
ZHAO Bao-cheng, CAO Xi. Cable domes structure optimization design [J]. Industry Architecture, 2002, 32(10): 60-62.
[4] 袁行飞. 索穹顶结构截面和预应力优化设计[J]. 空间结构, 2002, 8(3): 51-56.
YUAN Xing-fei. Section and prestress optimization design of cable domes structure [J]. Space Structure, 2002, 8(3): 51-56.
[5] 陈联盟,董石麟,袁行飞. 索穹顶结构优化设计[J]. 科技通报, 2006, 22(1): 84-89.
CHEN Lian-meng, DONG Shi-lin, YUAN Xing-fei. Optimization design of cable domes structure [J]. Bulletin of Science and Technology, 2006, 22(1): 84-89.
[6] 吴杰,张其林,罗晓群. 张拉整体结构预应力优化设计的序列两级算法[J]. 工业建筑, 2004, 34(4): 82-91.
WU Jie, ZHANG Qi-lin, LUO Xiao-qun. A sequential two-level algorithm for the optimization design of prestress of tensegrity structure [J]. Industry Architecture, 2004, 34(4): 82-91.
[7] 刘锡良. 现代空间结构[M]. 天津:天津大学出版社, 2003.
[8] 钱若军,沈祖炎,夏绍华,等. 结构概念及全张力体系的工作机理[J]. 空间结构, 1996, 2(3): 2-7.
QIAN Ruo-jun, SHEN Zu-yan, XIA Shao-hua, et al. Structural concept and work mechanism of full tensegrity system [J]. Space Structure, 1996, 2(3): 2-7.
[9] 隋允康,绍建义. 自适应超静定桁架结构强度控制的研究[J]. 固体力学学报, 2001, 22(2): 136-142.
SUI Yong-kang, SHAO Jian-yi. Intention control research of self-adaptive hyperstatic truss structure [J]. Acta Mechanica Solida Sinica, 2001, 22(2): 136-142.

[1] SONG Zhi-jie, ZHUO Xin. Fast calculation method for initial prestress of
rib-patterned cable dome with two hoops in each layer
[J]. J4, 2012, 46(9): 1619-1624.
[2] XIAO Na, HUANG Yu-Xiang, DONG Dan-Lin, DENG. Strength optimization analysis of tensegrity structure by shape adjustments under restricted displacements[J]. J4, 2010, 44(1): 166-173.