Please wait a minute...
J4  2009, Vol. 43 Issue (8): 1506-1512    DOI: 10.3785/j.issn.1008-973X.2009.
    
Advanced co-rotational curved triangular shell element using discrete strain gap method
 LI Zhong-Hua, XU Jin, LIU Yong-Fang, YU Dong-liang, YE Qing-hui
Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
Download:   PDF(967KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An advanced 6-node co-rotational curved triangular shell element for large displacement and large rotation analysis was presented. Different from other existing co-rotational finite element formulations, the present element has several features: 1) vectorial rotational variables are employed, which are the two smaller components of the mid-surface normal vector at each node|2) all nodal variables including three translations and two vectorial rotational variables are additive in an incremental solution procedure|3) the element tangent stiffness is calculated as the second derivatives of the strain energy of an element with respect to nodal variables, and all nodal variables are commutative in calculating the differentiation, resulting in a symmetric element tangent stiffness matrix. To overcome locking phenomena, the assumed membrane strains and shear strains calculated respectively according to the discrete strain gap method are employed, and the achieved element tangent stiffness matrix is still symmetric. Finally, four well-chosen elastic shell problems were solved to illuminate the reliability, computational accuracy and efficiency of the proposed element formulation.



Published: 28 September 2009
CLC:  TU 311.4  
Cite this article:

LI Zhong-Hua, XU Jin, LIU Yong-Fang, et al. Advanced co-rotational curved triangular shell element using discrete strain gap method. J4, 2009, 43(8): 1506-1512.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2009.     OR     http://www.zjujournals.com/eng/Y2009/V43/I8/1506


采用应变差分离法的新型协同转动三边形曲壳单元

发展了一种能够解决结构大位移、大转角问题的新型协同转动三边形曲壳单元.不同于现有的其他协同转动有限元法,本单元有如下特色:1)采用了矢量型节点转动变量,它们是单元节点处曲壳中面法向矢量的2个较小分量;2)所有的节点变量在增量求解过程中都是采用简单的加法进行更新的;3)单元的切线刚度矩阵是通过计算单元应变能对节点变量的二阶微分得到,且节点变量间的微分次序是可互换的,因而得到的切线刚度矩阵是对称的.为消除可能出现的闭锁现象,在计算单元应变能时引入了假定膜应变和假定剪切应变.这些假定应变采用应变差分离法计算,它们不影响单元切线刚度矩阵的对称性.通过对4个典型算例的分析,验证了单元的可靠性、计算精度和计算效率.

[1] CRISFIELD M A, MOITA G F. A co-rotational formulation for 2-D continua including incompatible modes [J]. International Journal for Numerical Methods in Engineering, 1996, 39(15): 2619-2633.
[2] LIU W K, GUO Y, TANG S, et al. A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 154(1): 69-132.
[3] IZZUDDIN B A. An enhanced co-rotational approach for large displacement analysis of plates [J]. International Journal for Numerical Methods in Engineering, 2005, 64(10): 1350-1374.
[4] KIM K D, LOMBOY G R. A co-rotational quasi-conforming 4-node resultant shell element for large deformation elasto-plastic analysis [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44-47): 6502-6522.
[5] STOLARSKI H, BELYTSCHKO T, LEE S H. Review of shell finite elements and corotational theories [J]. Computational Mechanics Advances, 1995, 2(2): 125-212.
[6] YANG H T Y, SAIGAL S, MASUD A, et al. A survey of recent shell finite elements [J]. International Journal for Numerical Methods in Engineering, 2000, 47(1-3): 101-127.
[7] FELIPPA C A, HAUGEN B. A unified formulation of small-strain corotational finite elements: I. Theory [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21-24): 2285-2335.
[8] DE SOUSA R J A, CARDOSO R P R, VALENTE R A F, et al. A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness — Part II: Nonlinear applications [J]. International Journal for Numerical Methods in Engineering, 2006, 67(2): 160-188.
[9] BRUNET M, SABOURIN F. Analysis of a rotation-free 4-node shell element [J]. International Journal for Numerical Methods in Engineering, 2006, 66(9): 1483-1510.
[10] LI Z X. A co-rotational formulation for 3D beam element using vectorial rotational variables [J]. Computational Mechanics, 2007, 39(3): 309-322.
[11] LI Z X. A mixed co-rotational formulation of 2D beam element using vectorial rotational variables [J]. Communications in Numerical Methods in Engineering, 2007, 23(1): 45-69.
[12] LI Z X, VU-QUOC L. An efficient co-rotational formulation for curved triangular shell element [J]. International Journal for Numerical Methods in Engineering, 2007, 72(9): 1029-1062.
[13] LI Z X, IZZUDDIN B A, VU-QUOC L. A 9-node co-rotational quadrilateral shell element [J]. Computational Mechanics, 2008, 42(6): 873-884.
[14] 李忠学. 有限元分析中梁板壳单元的各种闭锁现象及解决方法[J]. 浙江大学学报:工学版, 2007, 41(7): 1119-1125.
LI Zhong-xue. Strategies for overcoming locking phenomena in beam and shell finite element formulations [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(7): 1119-1125.
[15] BLETZINGER K U, BISCHOFF M, RAMM E. A unified approach for shear-locking-free triangular and rectangular shell finite elements [J]. Computers & Structures, 2000, 75(3): 321-334.
[16] KOSCHNICK F, BISCHOFF M, CAMPRUBI N, et al. The discrete strain gap method and membrane locking [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21-24): 2444-2463.
[17] MOITA G F, CRISFIELD M A. A finite element formulation for 3-D continua using the co-rotational technique [J]. International Journal for Numerical Methods in Engineering, 1996, 39(22): 3775-3792.
[18] GRUTTMANN F, WAGNER W. A linear quadrilateral shell element with fast stiffness computation [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41): 4279-4300.
[19] SIMO J C, FOX D D, RIFAI M S. On stress resultant geometrically exact shell model. Part II: The linear theory|computational aspects [J]. Computer Methods in Applied Mechanics and Engineering, 1989, 73(1): 53-92.
[20] OLIVER J, ONATE E. A total Lagrangian formulation for the geometrically nonlinear analysis of structures using finite elements. Part 1. Two-dimensional problems: shell and plate structures [J]. International Journal for Numerical Methods in Engineering, 1984, 20(12): 2253-2281.
[21] CAMPELLO E M B, PIMENTA P M, WRIGGERS P. A triangular finite shell element based on a fully nonlinear shell formulation [J]. Computational Mechanics, 2003, 31(6): 505-518.
[22] JIANG L, CHERNUKA M W. A simple four-noded corotational shell element for arbitrarily large rotations [J]. Computers & Structures, 1994, 53(5): 1123-1132.
[23] BATTINI J M. A modified corotational framework for triangular shell elements [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(13-16): 1905-1914.

[1] ZHANG Nian-Wen, TONG Gen-Shu. Rigid body test and recovery of nodal forces for beam element in updated Lagrangian formulation[J]. J4, 2010, 44(10): 1992-1997.