Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical and Energy Engineering     
Experiments on hydrogen/methane/air catalytic combustion in micro tube
ZHOU Ming yue, YANG Wei juan, DENG Chen, ZHOU Jun hu, LIU Jian zhong, CEN Ke fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1390KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
Experiments on hydrogen/methane/air catalytic combustion were carried out in a micro combustor composed of a quartz glass tube and a ceramic tube. The experiments mainly focused on the effects of mixing ratio, equivalence ratio and inlet flow rate on the stable combustion range, flame feature, wall temperature and the heat loss of tube wall. The experimental results show that the lower limit of stable combustion inlet flow rate decreases when the mixing ratio increases, while it decreases firstly and then increases with the increase of equivalence ratio. In the condition of that the mixing ratio is 0.9 and the equivalence ratio is 1.6, the flame could realize stable combustion as the inlet flow rate varied from 0.25 to 19.00m/s. Simultaneously, the highest wall temperature and maximum length of heat recirculation zone are achieved. Two layers of the flame can be observed in two catalytic zones, the front of the flame becomes inclined cone shaped and its root moves downstream with the increase of mixing ratio. The heat loss of the tube wall increases with the increase of mixing ratio and inlet flow rate, and heat loss rate increases with the increase of mixing ratio and decreases with the increase of inlet flow rate. Radiative heat loss accounting for the proportion of the total heat loss increases firstly and then decreases with the increase of equivalence ratio, and reaches the maximum of 63.93% when equivalence ratio is 1.6.


Published: 31 December 2015
CLC:  TK 91  
Cite this article:

ZHOU Ming yue, YANG Wei juan, DENG Chen, ZHOU Jun hu, LIU Jian zhong, CEN Ke fa. Experiments on hydrogen/methane/air catalytic combustion in micro tube. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2276-2281.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.12.006     OR     http://www.zjujournals.com/eng/Y2015/V49/I12/2276


微型圆管内氢气/甲烷/空气催化燃烧实验

在石英玻璃管和陶瓷管组成的圆管微燃烧器内进行氢气/甲烷/空气的催化燃烧实验,研究混合比、当量比 和入口流速等对稳燃范围、火焰特性、壁面温度和壁面散热量的影响.实验结果表明,维持稳定燃烧的入口流速下限随混合比的增大而减小,但随当量比的增大而先减小后增大;在混合比为0.9、当量比为1.6的工况下,可以在0.25~19.00 m/s的入口流速下实现稳定燃烧,且此时壁面温度最高、热回流区域最长.火焰在2个催化区域内分为2层,且随着混合比的增大,火焰锋面变为倾斜的锥形、根部向下游移动.壁面散热量随混合比和入口流速的增大而增大,散热率却随混合比的增大而增大,随入口流速的增大而减小.壁面辐射散热占总散热量的比例也是先增大后减小,在当量比为1.6时达到最大值63.93%.
[1] CHIA L C, FENG B. The development of a micropower device [J]. Journal of Power Source,2007,165(1):455-480.
[2] YANG W M, CHOU S K, SHU C, et al. Development of microthermophotovoltaic system [J]. Applied Thermal Engineering,2002,81(27): 5255-5257.
[3] JCON Y B, SOOD R, JCONG J H, et al. MEMS power generator with transverse mode thin film PZT [J]. Sensor and Actuator A: Physical,2005,122(1): 16-22.
[4] 周俊虎,汪洋,杨卫娟,等.燃料气体预热温度对微燃烧器性能影响的分析[J].农业机械学报,2010,41(8): 90-93.
ZHOU Jun hu, WANG Yang, YANG Wei juan, et al. Effects of preheating fuel gas to micro scale flame [J]. Journal of Agricultural Machinery, 2010,41(8): 90-93.
[5] LIN C X, GADEPALLI V V V. A computational study of gas flow in a De Laval micronozzle at different throat diameters [J]. International Journal for Numerical Methods in
Fluids,2009,59(11): 1203-1216.
[6] 童俊杰,徐进良,岑继文.喉部不对称对微喷管性能影响[J].航空动力学报,2010,25(4): 808-815.
TONG Jun jie, XU Jin liang, CEN Ji wen. Effects of throat asymmetry on micro nozzle’s performance [J]. Journal of Aerospace Power, 2010,25(4): 808-815.
[7] 杨泽亮,陈邵有,甘云华,等.磁场下液体乙醇微尺度扩散火焰的实验研究[J].华南理工大学学报:自然科学版,2010,38(3): 114-117
YANG Ze liang, CHEN Shao you, GAN Yun hua, et al. Experimental investigation into micro scale diffusion flame of liquid ethanol affected by magnetic field [J]. Journal of
South China University of Technology, 2010,38(3): 114-117.
[8] 伍亨,钟北京.空间反应和入口速度对甲烷催化反应的影响[J].清华大学学报:自然科学版,2005,45(5): 670-676.
WU Heng, ZHONG Bei jing. Influence of the gas phase reaction and the inlet velocity on the catalytic reaction of CH4 [J]. Journal of Tsinghua Unversity: Science and
Technology, 2005,45(5): 670-676.
[9] 邓尘,杨卫娟,王威, 等.微型缩放管中氢气/空气预混燃烧实验研究[J].中国电机工程学报,2014,34(2):260-265.
DENG Chen, YANG Wei juan, WANG Wei, et al. Experiments on H2/Air premixed combustion in a micro laval nozzle [J]. Proceedings of the CSEE, 2014,34(2): 260-265.
[10] 张永生,周俊虎,杨卫娟, 等.微燃烧稳定性分析和微细管道燃烧实验研究[J],浙江大学学报:工学版,2006,40(7): 1178-1182.
ZHANG Yong sheng, ZHOU Jun hu, YANG Wei juan, et al. Burning stability analysis of micro combustion and experiments research of combustion in microscale tube [J].Journal of
Zhejiang University: Engineering Science, 2006, 40(7): 1178-1182.
[11] 蒋利桥,赵黛青,汪小憨,等.微尺度甲烷扩散火焰及其熄灭特性[J].燃烧科学与技术, 2007, 13(2): 183-186.
JIANG Li qiao, ZHAO Dai qing, WANG Xiao han, et al. The micro diffusion flame and quench feature of methane [J]. Combustion Science and Technology, 2007, 13(2): 183-186.
[12] CHEN G B, CHEN C P, WU C Y, et al. Effects of catalytic walls on hydrogen/air combustion inside a micro tube [J].Applied Catalysis, 2007, 332(1): 89-97.
[13] 冉景煜,吴晟,赵柳洁.微细通道内氢气辅助甲烷催化氧化的数值模拟[J].燃烧科学与技术.2011,17(3): 196-202.
RAN Jing yu, WU Sheng, ZHAO Liu jie. Numerical simulation of hydrogen assisted lean methane catalytic oxidation in a micro channel [J].Journal of Combustion Science and
Technology, 2011,17(3): 196-202.
[14] ZHANG Y S, ZHOU J H, YANG W J, et al. Effects of hydrogen addition on methane catalytic combustion in a microtube [J]. International Journal of Hydrogen Energy, 2007,
32(9): 1286-1293
[15] 张勇,黄佐华,王倩,等.天然气 氢气 空气混合气火焰传播特性研究[J].内燃机学报,2006,24(6): 481-488.
ZHANG Yong, HUANG Zuo hua, WANG Qian, et al. Flame propagation characteristics of natural gas hydrogen air mixtures [J]. Transactions of CSICE, 2006, 24(6): 481-488.
[16] 张红光,白小磊,韩雪娇,等.甲烷掺混氢气的燃烧特性试验研究[J].兵工学报,2011, 32(2): 230-235.
ZHANG Hong guang, BAI Xiao lei, HAN Xue jiao, et al. Research on combustion characteristics of methane hydrogen air mixture [J]. Journal of Ordnance, 2011, 32(2): 230-235.
[17] LAW C K, KWON O C. Effects of hydrocarbon substitution on atmospheric hydrogen air flame propagation [J].International Journal of Hydrogen Energy, 2004, 29(8): 867879.
[18] GAUDUCHCAU J L, DENET B, SEARBY G. A numerical study of lean CH4/H2/air premixed flames at high pressure [J].Combustion Science and Technology, 1998, 137(1 6): 81-99.
[19] 曹海亮,徐进良,张永立,等.微小尺度下氢气预混燃烧的实验研究[J].力学学报,2006,38(3): 316-322.
CAO Hai liang, XU Jin liang, ZHANG Yong li, et al. Experimental investigation of microscale premixed combustion of hydrogen [J].Chinese Journal of Theoretical and Applied
Machanics,2006,38(3): 316-322.
[20] GAYDON A G, WOLFHARD H G. Flames: Their Structure, Radiation and Temperature[M].London: Chapman and Hall,1979: 102-109.
[21] 王威,邓尘,杨卫娟,等.渐缩微喷管内氢气掺混甲烷预混燃烧实验研究[J].浙江大学学报:工学版,2014,48(10): 1727-1731.
WANG Wei, DENG Chen, YANG Wei juan, et al. Experiments on hydrogen combustion with addition of methane in a micro converged nozzle [J]. Journal of Zhejiang University:
Engineering Science, 2014,48(10): 1727-1731.
[1] WANG Wei, DENG Chen, YANG Wei-juan, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa.
Experiments on hydrogen combustion with addition of  methane in micro converged nozzle
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1727-1731.
[2] ZHU Qiao-qiao, WANG Zhi-hua, YANG Jian, ZHANG Yan-wei, ZHOU Jun-hu, CEN Ke-fa. Experimental study of influence of iodine content on Bunsen reaction
in the sulfur-iodine cycle for hydrogen production
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(10): 1786-1790.
[3] QIAN Miao, MEI De-qing, LIU Bin-hong,CHEN Zi-chen. Heat and mass transfer characteristics in reforming micro-reactor with micro-pin-fin arrays[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(8): 1387-1392.
[4] YANG Jian,WANG Zhi-hua,ZHANG Yan-wei,CHEN Yun,ZHOU Jun-hu,CEN Ke-fa. Process design and simulation of open-loop sulfur-iodine
thermo-chemical cycle for hydrogen production
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(5): 869-877.
[5] LIN Lin, WU Rui, ZHANG Xin-xin. Optimization for geometric parameters of micro-channel heat sink
using inverse problem method
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(4): 734-740.