Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2009, Vol. 10 Issue (9): 1231-1240    DOI: 10.1631/jzus.A0820478
Mechanical and Mechanics Engineering     
Nonlinear dynamic analysis of the Three Gorge Project powerhouse excited by pressure fluctuation
Cun-hui ZHANG, Yun-liang ZHANG
School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  This study established a 3D finite element model for 15# hydropower house of the Three Gorges Project (TGP) and performed a nonlinear dynamic analysis under pressure fluctuation. In this numerical model, the stiffness degradation in tension for concrete was considered on the basis of the continuum isotropic damage theory. Natural vibration frequencies of the damaged and undamaged structures were compared after static water pressure was applied. Then a study was further conducted on forced vibration of the powerhouse with pre-existing damages under pressure fluctuation that acts on the flow passage; displacement, velocity and acceleration of the important structural members were afterwards presented and checked. Numerical results show that tensile damages in concrete surrounding the spiral case only exert significant impact upon the dynamic characteristics of substructure but show little effect on the superstructure. Nevertheless vibrations of the powerhouse are still under the recommended vibration limits.

Key wordsThree Gorges Project (TGP)      Hydropower house      Dynamic      Nonlinear      Damage      Pressure fluctuation     
Received: 22 June 2008     
CLC:  TV3  
  TV6  
  TV7  
  TV22  
Cite this article:

Cun-hui ZHANG, Yun-liang ZHANG. Nonlinear dynamic analysis of the Three Gorge Project powerhouse excited by pressure fluctuation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(9): 1231-1240.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A0820478     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2009/V10/I9/1231

[1] Fang He, Zhenhua Huang. Characteristics of orifices for modeling nonlinear power take-off in wave-flume tests of oscillating water column devices[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 329-345.
[2] Qing-shuai Cao, Yang Zhao. Buckling design of large steel silos with various slendernesses[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(4): 282-305.
[3] Dong-fang Hu, Zheng-liang Huang, Jing-yuan Sun, Jing-dai Wang, Zu-wei Liao, Bin-bo Jiang, Jian Yang, Yong-rong Yang. Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(3): 212-224.
[4] Shan-shan Pan, Wei-qiu Zhu, Rong-chun Hu, Rong-hua Huan. Stationary response of stochastically excited nonlinear systems with continuous-time Markov jump[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(2): 83-91.
[5] Deng-hua Zhong, Wei Hu, Bin-ping Wu, Zheng Li, Jun Zhang. Dynamic time-cost-quality tradeoff of rockfill dam construction based on real-time monitoring[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 1-19.
[6] Liang Ma, Jun-hong Zhang, Jie-wei Lin, Jun Wang, Xin Lu. Dynamic characteristics analysis of a misaligned rotor–bearing system with squeeze film dampers[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 614-631.
[7] Zhi-long Huang, Xiao-ling Jin, Rong-hua Ruan, Wei-qiu Zhu. Typical dielectric elastomer structures: dynamics and application in structural vibration control[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(5): 335-352.
[8] Wen-yang Duan, Yang Han, Rui-feng Wang, Li-min Huang. A predictive controller for joint pitch-roll stabilization[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(5): 399-415.
[9] Wen-yang Duan, Li-min Huang, Yang Han, De-tai Huang. A hybrid EMD-AR model for nonlinear and non-stationary wave forecasting[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(2): 115-129.
[10] Usama Umer, Jaber Abu Qudeiri, Mohammad Ashfaq, Abdulrahman Al-Ahmari. Chip morphology predictions while machining hardened tool steel using finite element and smoothed particles hydrodynamics methods[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 873-885.
[11] Jin-yuan Qian, Bu-zhan Liu, Zhi-jiang Jin, Jian-kai Wang, Han Zhang, An-le Lu. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 54-64.
[12] Xiao-yan Huang, Jian-cheng Zhang, Chuan-ming Sun, Zhang-wen Huang, Qin-fen Lu, You-tong Fang, Li Yao. A combined simulation of high speed train permanent magnet traction system using dynamic reluctance mesh model and Simulink[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 607-615.
[13] Zheng Tan, Xue-guan Song, Bing Ji, Zheng Liu, Ji-en Ma, Wen-ping Cao. 3D thermal analysis of a permanent magnet motor with cooling fans[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 616-621.
[14] Ting-chun Li, Lian-xun Lyu, Shi-lin Zhang, Jie-cheng Sun. Development and application of a statistical constitutive model of damaged rock affected by the load-bearing capacity of damaged elements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 644-655.
[15] Wen-yang Duan, Li-min Huang, Yang Han, Ya-hui Zhang, Shuo Huang. A hybrid AR-EMD-SVR model for the short-term prediction of nonlinear and non-stationary ship motion[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(7): 562-576.