Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2015, Vol. 16 Issue (8): 644-655    DOI: 10.1631/jzus.A1500034
Civil Engineering     
Development and application of a statistical constitutive model of damaged rock affected by the load-bearing capacity of damaged elements
Ting-chun Li, Lian-xun Lyu, Shi-lin Zhang, Jie-cheng Sun
Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao 266590, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  It is difficult to establish a constitutive model of damage for rock materials due to the complex meso-mechanism of the rock deterioration process. In this paper, by analysis of the damage mechanism, the reason for the existence of a rock damage threshold is explained and we conclude that damaged rock elements of micro scale can still bear stress. The correlation between damaged and undamaged elements is examined in relation to stress distribution. Rocks under different initial conditions can be defined as undamaged materials with different properties, to avoid the issue of the solution of the undamaged condition and to simplify the damage model. On the basis of the Mohr-Coulomb criterion and theories of continuum damage and statistical mechanics, a constitutive model of rock materials affected by the load-bearing capacity of damaged elements under triaxial compression is established. Compared with previous experimental data and theoretical results, we show that this model can reflect the stress-strain relationship of the whole process of rock failure. In particular, the description of the strain softening stage after peak strength is proved to be more reasonable. Programming of the constitutive model applied to stability analysis of the Qingdao subway station is achieved by secondary development of FLAC3D. The computing results compare very well with field monitoring data, indicating that the constitutive model of damaged rock can reflect the deterioration effect of weathered rock at the site. This constitutive model of rock damage may provide a useful reference for practical application.

Key wordsRock materials      Damaged elements      Statistical theory      Load-bearing capacity      Constitutive model     
Received: 10 February 2015      Published: 04 August 2015
CLC:  TU45  
Cite this article:

Ting-chun Li, Lian-xun Lyu, Shi-lin Zhang, Jie-cheng Sun. Development and application of a statistical constitutive model of damaged rock affected by the load-bearing capacity of damaged elements. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 644-655.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1500034     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2015/V16/I8/644

[1] Hui-ming Wang, Shao-xing Qu. Constitutive models of artificial muscles: a review[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 22-36.
[2] Hui Liu, Ming-hua He, Jia Guo, Yong-jiu Shi, Zhao-xin Hou, Lu-lu Liu. Design-oriented modeling of circular FRP-wrapped concrete columns after sustained axial compression[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 47-58.
[3] Qiang Xu, Jian-yun Chen, Jing Li, Hong-yuan Yue. A study on the contraction joint element and damage constitutive model for concrete arch dams[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 208-218.
[4] Qiang Xu, Jian-yun Chen, Jing Li, Gang Xu. Coupled elasto-plasticity damage constitutive models for concrete[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 256-267.
[5] Yu-jun Cui, Trong Vinh Duong, Anh Minh Tang, Jean-Claude Dupla, Nicolas Calon, Alain Robinet. Investigation of the hydro-mechanical behaviour of fouled ballast[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 244-255.
[6] Hui Liu, Ming-hua He, Yu-qi Luan, Jia Guo, Lu-lu Liu. A modified constitutive model for FRP confined concrete in circular sections and its implementation with OpenSees programming[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(12): 856-866.
[7] Min Zhang, Xing-hua Wang, Guang-cheng Yang, You Wang. Numerical investigation of the convex effect on the behavior of crossing excavations[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 747-757.
[8] Qiang Li, Shu-lian Liu, Shui-ying Zheng. Rate-dependent constitutive model of poly(ethylene terephthalate) for dynamic analysis[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 811-816.
[9] Jian-ye ZHENG, An-li WU. Mesoscopic analysis of the utilization of hardening model for a description of softening behavior based on disturbed state concept theory[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(9): 1167-1175.