Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (2): 271-279    DOI: 10.3785/j.issn.1008-973X.2021.02.007
    
Equivalent resistance network modeling for reforming micro-reactor with porous fibrous structure
Zhi-jia XU(),Chang-lin YU,Qing-hui WANG*()
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
Download: HTML     PDF(1347KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An equivalent resistance network model for randomly distributed micro-channels in porous fibrous structure (PFS) was established, aming at the efficient analysis problem of flow velocity field for PFS that used in micro-reactor for hydrogen production by reforming. The complex and randomly-connected micro-channels for fluid flow in PFS, as well as the inlet and outlet manifolds of PFS, were simplified as regular network based on the statistical network developed for complex and random fibrous structure. An equivalent resistance network model for PFS was developed in the light of Kirchhoff’s law, and the solution method was determined. The proposed method was validated by comparing with a previously developed computational fluid dynamics (CFD) approach. Results indicated that, the Pearson correlation coefficient between the velocity distributions of PFS obtained by the two methods was about 98%, while the efficiency of the proposed method was about 2.9×104 times that of CFD approach. In this way, a superior supportive technology for the design and fabrication of micro-reactor with PFSs for hydrogen production via reforming was provided.



Key wordshydrogen production by reforming      porous fibrous structure      equivalent resistance network      velocity field      high efficiency     
Received: 03 July 2020      Published: 09 March 2021
CLC:  TK 91  
Fund:  国家自然科学基金资助项目(51875210,51775192);广东省自然科学基金资助项目(2018B030311032);广州市科技计划资助项目(201804010420);聚合物成型加工工程教育部重点实验室开放课题资助项目(KFKT1804);中央高校基本业务费资助项目(2019ZD25)
Corresponding Authors: Qing-hui WANG     E-mail: mexzj@scut.edu.cn;wqh@scut.edu.cn
Cite this article:

Zhi-jia XU,Chang-lin YU,Qing-hui WANG. Equivalent resistance network modeling for reforming micro-reactor with porous fibrous structure. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 271-279.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.02.007     OR     http://www.zjujournals.com/eng/Y2021/V55/I2/271


多孔纤维型重整微反应器的等效电阻网络建模

针对应用于重整制氢微反应器的复杂多孔金属纤维载体(PFS)的流速场高效分析难题,建立载体中随机微通道的等效电阻网络分析模型. 基于复杂随机纤维结构的统计网络模型,将纤维载体中三维联通的随机微通道结构及与之相连的进出口腔简化为规则的网络通道结构.借鉴基尔霍夫定律,建立纤维载体的等效电阻网络模型,并确定求解方法. 纤维载体流速场实例分析的结果表明,基于等效电阻网络模型求解的纤维载体流速场与计算流体力学(CFD)方法的结果之间的皮尔森相关系数约为98%,且求解效率约为CFD方法的2.9×104倍. 研究成果为多孔纤维型重整制氢微反应器的设计制造提供了新的支撑方案.


关键词: 重整制氢,  多孔纤维,  等效电阻网络,  流速场,  高效 
Fig.1 Preparation process, optical and SEM images of porous fibrous structure
Fig.2 Methanol steaming reforming micro-reactor based on porous fibrous structure
Fig.3 Schematic of statistic network of random fibrous structure
Fig.4 Fluid flow micro-channel network of porous fibrous structure
Fig.5 Network model of fluid flow channel in output manifold
Fig.6 Complete fluid flow micro-channel network of porous fibrous structure
Fig.7 Schematic of equivalent resistance network model for fluid flow micro-channel of porous fibrous structure
Fig.8 Schematic of equivalent resistance network model of output manifold
Fig.9 Complete equivalent resistance network model of porous fibrous structure
Fig.10 Comparison between velocity distributions obtained based on equivalent resistance network and CFD
E r η /(10?4 m?s?1 MAPE /% MSE /(10?4 m?s?1
0.7 0.982 1.434 0.741 4.188
0.8 0.978 1.565 0.807 4.617
0.9 0.978 2.499 1.280 4.884
Tab.1 Pearson correlation between velocity distributions obtained based on equivalent resistance network and CFD
E 方法 vavg /
(m?s?1
vmax /
(m?s?1
vmin /
(10?3 m?s?1
MSE /
(10?6 m?s?1
t /s
0.7 CFD 0.019 0.032 3.162 4.800 17208
0.7 本研究 0.019 0.038 2.232 4.794 0.588
0.8 CFD 0.019 0.032 3.148 4.844 16200
0.8 本研究 0.019 0.038 2.245 4.792 0.560
0.9 CFD 0.020 0.033 3.103 5.005 15980
0.9 本研究 0.019 0.038 2.234 4.794 0.542
Tab.2 Information of velocity distributions obtained based on equivalent resistance network and CFD
[1]   FATHY A, ELAZIZ M A, ALHARBI A G A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell[J]. Renewable Energy, 2020, 146: 1833- 1845
doi: 10.1016/j.renene.2019.08.046
[2]   汪翼东. 面向PEMFC的甲醇现场重整制氢系统设计与应用研究[D]. 杭州: 浙江大学, 2019.
WANG Yi-dong. Design and application study of methanol fuel processing system for PEMFC [D]. Hangzhou: Zhejiang University, 2019.
[3]   易邹东一. 面向PEMFC的自热型甲醇重整制氢反应器的研发[D]. 杭州: 浙江大学, 2019.
YI Zou-dong-yi. Development of a self-heated methanol steaming reforming reactor for PEMFC [D]. Hangzhou: Zhejiang University, 2019.
[4]   YAN Y, ZHANG Z, ZHANG L, et al Investigation of autothermal reforming of methane for hydrogen production in a spiral multi-cylinder micro-reactor used for mobile fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40 (4): 1886- 1893
doi: 10.1016/j.ijhydene.2014.11.140
[5]   PALO D R, DAGLE R A, HOLLADAY J D Methanol steam reforming for hydrogen production[J]. Chemical Reviews, 2007, 107 (10): 3992- 4021
doi: 10.1021/cr050198b
[6]   WANG F, WANG G Performance and cold spot effect of methanol steam reforming for hydrogen production in micro-reactor[J]. International Journal of Hydrogen Energy, 2016, 41 (38): 16835- 16841
doi: 10.1016/j.ijhydene.2016.07.083
[7]   贺行. 面向甲醇重整供氢系统的自热式CO去除微反应器[D]. 杭州: 浙江大学, 2017.
HE Xing. Self-heated microreactor for CO removal from hydrogen supply system via methanol reforming [D]. Hangzhou: Zhejiang University, 2017.
[8]   HUANG Y X, JANG J Y, CHENG C H Fractal channel design in a micro methanol steam reformer[J]. International Journal of Hydrogen Energy, 2014, 39 (5): 1998- 2007
doi: 10.1016/j.ijhydene.2013.11.088
[9]   钱淼, 梅德庆, 刘宾虹, 等 微凸台阵列型重整微反应器的传热传质特性[J]. 浙江大学学报: 工学版, 2011, 45 (8): 1387- 1392
QIAN Miao, Mei De-qing, LIU Bin-hong, et al Heat and mass transfer characteristics in reforming micro-reactor with micro-pin-fin arrays[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (8): 1387- 1392
[10]   梁灵威. 甲醇重整制氢A型微通道反应器流场优化与传热传质特性研究[D]. 杭州: 浙江大学, 2015.
LIANG Ling-wei. Research on flow field optimization and heat and mass transfer capacity of the A-type microchannel reactor for hydrogen production via methanol reforming [D]. Hangzhou: Zhejiang University, 2019.
[11]   MEI D, FENG Y, QIAN M, et al An innovative micro-channel catalyst support with a micro-porous surface for hydrogen production via methanol steam reforming[J]. International Journal of Hydrogen Energy, 2016, 41 (4): 2268- 2277
doi: 10.1016/j.ijhydene.2015.12.044
[12]   ZHOU W, KE Y, WANG Q, et al Development of cylindrical laminated methanol steam reforming microreactor with cascading metal foams as catalyst support[J]. Fuel, 2017, 191 (3): 46- 53
doi: 10.1016/j.fuel.2016.11.058
[13]   LIU Y, ZHOU W, CHEN L, et al Optimal design and fabrication of surface microchannels on copper foam catalyst support in a methanol steam reforming microreactor[J]. Fuel, 2019, 253: 1545- 1555
doi: 10.1016/j.fuel.2019.05.099
[14]   KE Y, ZHOU W, CHU X, et al Porous copper fiber sintered felts with surface microchannels for methanol steam reforming microreactor for hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44 (12): 5755- 5765
doi: 10.1016/j.ijhydene.2019.01.141
[15]   TANG Y, ZHOU W, PAN M, et al Porous copper fiber sintered felts: an innovative catalyst support of methanol steam reformer for hydrogen production[J]. International Journal of Hydrogen Energy, 2008, 33 (12): 2950- 2956
doi: 10.1016/j.ijhydene.2008.04.006
[16]   ZHOU W, WANG Q, LI J, et al Hydrogen production from methanol steam reforming using porous copper fiber sintered felt with gradient porosity[J]. International Journal of Hydrogen Energy, 2015, 40 (1): 244- 255
doi: 10.1016/j.ijhydene.2014.10.139
[17]   KUNDU A, PARK J M, AHN J E, et al Micro-channel reactor for steam reforming of methanol[J]. Fuel, 2007, 86 (9): 1331- 1336
doi: 10.1016/j.fuel.2006.08.003
[18]   AMIRI E O, HORMOZI F, KHOSHANDAM B Methanol steam reforming integrated with oxidation in a conical annulus micro-reactor[J]. International Journal of Hydrogen Energy, 2014, 39 (2): 761- 769
doi: 10.1016/j.ijhydene.2013.10.130
[19]   TONOMURA O, TANAKA S, NODA M, et al CFD-based optimal design of manifold in plate-fin microdevices[J]. Chemical Engineering Journal, 2004, 101 (1): 397- 402
[20]   AMADOR C, GAVRIILIDIS A, ANGELI P Flow distribution in different microreactor scale-out geometries and the effect of manufacturing tolerances and channel blockage[J]. Chemical Engineering Journal, 2004, 101 (1): 379- 390
[21]   MEI D, QIAN M, LIU B, et al A micro-reactor with micro-pin-fin arrays for hydrogen production via methanol steam reforming[J]. Journal of Power Sources, 2012, 205 (2): 367- 376
[22]   LIU H, LI P Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels[J]. International Journal of Heat and Fluid Flow, 2013, 40 (4): 165- 179
[23]   郑帅, 谭大鹏, 李霖, 等 微反应器计算流体力学与离散元建模及调控[J]. 浙江大学学报: 工学版, 2019, 53 (7): 1237- 1251
ZHENG Shuai, TAN Da-peng, LI Lin, et al Ultrasonic coupled microreactor CFD-DEM dynamic modeling and regulating method[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (7): 1237- 1251
[24]   冯艳冰. 表面多孔微通道制氢反应器的设计与制造基础研究[D]. 杭州: 浙江大学, 2019.
FENG Yan-bing. Fundamental study on the design and fabrication of micro channel reactor with porous surface for hydrogen production [D]. Hangzhou: Zhejiang University, 2019.
[25]   QIAN M, MEI D, YI Z, et al Fluid flow and heat transfer performance in a micro-reactor with non-uniform micro-pin-fin arrays for hydrogen production at low Reynolds number[J]. International Journal of Hydrogen Energy, 2017, 42 (1): 553- 561
doi: 10.1016/j.ijhydene.2016.10.150
[26]   WANG Y, HUANG L, MEI D, et al Numerical modeling of microchannel reactor with porous surface microstructure based on fractal geometry[J]. International Journal of Hydrogen Energy, 2018, 43 (49): 22447- 22457
doi: 10.1016/j.ijhydene.2018.10.135
[27]   PAN M, TANG Y, YU H, et al Modeling of velocity distribution among microchannels with triangle manifolds[J]. Aiche Journal, 2010, 55 (9): 1969- 1982
[28]   TONDEUR D, FAN Y, COMMENGE J M, et al Uniform flows in rectangular lattice networks[J]. Chemical Engineering Science, 2011, 66 (21): 5301- 5312
doi: 10.1016/j.ces.2011.07.027
[29]   MEI D, LIANG L, QIAN M, et al Modeling and analysis of flow distribution in an A-type microchannel reactor[J]. International Journal of Hydrogen Energy, 2013, 38 (35): 15488- 15499
doi: 10.1016/j.ijhydene.2013.09.105
[30]   CHENG X, SASTRY A M, LAYTON B E Transport in stochastic fibrous networks[J]. Journal of Engineering Materials and Technology, 2001, 123 (1): 12- 19
[31]   LUU H T, PERROT C, MONCHIET V, et al Three-dimensional reconstruction of a random fibrous medium: geometry, transport, and sound absorbing properties[J]. Journal of the Acoustical Society of America, 2017, 141 (6): 4768- 4780
doi: 10.1121/1.4989373
[32]   方玺, 葛权耕 基于随机电阻网络碳毡复合层力阻建模[J]. 应用数学和力学, 2013, 34 (1): 63- 71
FANG Xi, GE Quan-geng Modeling based on the random resistance network carbon felt composite layer[J]. Applied Mathematics and Mechanics, 2013, 34 (1): 63- 71
doi: 10.3879/j.issn.1000-0887.2013.01.007
[33]   DIDARI S, HARRIS T A L, HUANG W, et al Feasibility of periodic surface models to develop gas diffusion layers: a gas permeability study[J]. International Journal of Hydrogen Energy, 2012, 37 (19): 14427- 14438
doi: 10.1016/j.ijhydene.2012.06.100
[34]   XU Z J, YANG S, HU G H, et al Numerical study of flow distribution uniformity for the optimization of gradient porosity configuration of porous copper fiber sintered felt for hydrogen production through methanol steam reforming micro-reactor[J]. International Journal of Hydrogen Energy, 2018, 43 (9): 4355- 4370
doi: 10.1016/j.ijhydene.2018.01.083
[35]   DJILALI N Computational modelling of polymer electrolyte membrane (PEM) fuel cells: challenges and opportunities[J]. Energy, 2007, 32 (4): 269- 280
doi: 10.1016/j.energy.2006.08.007
[1] XU Shao-feng, WANG Jiu-gen. Effect of chain rigidity on the flow of macromolecular solution in micro-and nanochannels[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1406-1410.
[2] LOU Wen-juan, WANG Jia-wei, YANG Lun, CHEN Yong. Simulation of three-dimensional fluctuating wind velocity field #br# upon thunderstorm downburst[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1162-1169.
[3] QIAN Miao, MEI De-qing, LIU Bin-hong,CHEN Zi-chen. Heat and mass transfer characteristics in reforming micro-reactor with micro-pin-fin arrays[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1387-1392.